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Abstract

Unit-load warehouses are used to store items—typically pallets—that can be stowed
or retrieved in a single trip. In the traditional, ubiquitous design, storage racks are
arranged to create parallel picking aisles, which force workers to travel rectilinear dis-
tances to picking locations. We consider the problem of arranging aisles in new ways
to reduce the cost of travel for a single-command cycle within these warehouses. Our
models produce alternative designs with piecewise diagonal cross aisles, and with pick-
ing aisles that are not parallel. One of the designs promises to reduce the expected
distance that workers travel by more than 20 percent for warehouses of reasonable size.
We also develop a theoretical bound that shows that this design is close to optimal.



1 Warehouse Design

A distribution center consists of several component subsystems, including receiving, storage,

order picking, and shipping. Perhaps the most common building block in these systems is

the pallet storage area, which consists of storage racks, aisles between them, and one or

more pickup and deposit (P&D) points. In the academic literature this area is commonly

called a “warehouse,” and we adopt that terminology here. Because almost all products are

received and stored in pallet quantities, pallet warehouses tend to consume the majority of

space within a distribution center.

Warehouses in industry are typically comprised of single- or double-deep pallet racks

arranged in parallel picking aisles, as in Figure 1. In order picking warehouses, workers travel

through aisles with picking carts (or perhaps ride forklifts, with empty pallets) and build

orders by picking items or cases from the stored pallets. Large order picking warehouses

usually have one or more cross aisles (Figure 1, right), which tend to reduce the travel

distance between successive picks in a tour (Roodbergen and de Koster, 2001).

In unit-load warehouses, which are the subject of our work, items are stowed and retrieved

in pallet quantities, and each stow or pick is for a single pallet. Unit-load warehouses are

used in at least two ways in a distribution center: (1) as order picking areas, where products

are received and shipped in pallet quantities (distributors of groceries or appliances are two

examples); and (2) as reserve areas that replenish fast-pick areas (Bartholdi and Hackman,

2008). For example, a common arrangement is to have a fast-pick “module,” consisting of

a gravity-fed, carton flow rack, replenished from a pallet reserve area. Order pickers build

detailed orders from the flow rack, while workers on lift trucks replenish product into the flow

rack from the reserve pallet area. Unit-load operations are also common in crossdocking,

where pallets are stored briefly before being loaded onto outbound trucks.

Unit-load warehouses may use single-command cycles, dual-command cycles, or both. In

a single-command cycle, a worker accomplishes either a stow or a pick in each trip into the

warehouse. Therefore, travel is to and from a single storage location. In a dual-command

cycle, often referred to as “task interleaving,” a worker visits two storage locations per trip
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Figure 1: Configurations of typical warehouses in industry.

into the space—first for a stow, then for a pick. Dual-commands are more efficient with

respect to travel, but they require concurrent receiving (putaway) and shipping (picking)

operations and advanced IT systems to direct workers to picks. As a result, single-command

operations are common.

Whether a unit-load warehouse uses single- or dual-commands determines, to some ex-

tent, the design of the storage space. If operations are exclusively single-command, then

a traditional middle aisle (see Figure 1) confers no benefit. It is easy to see why: if the

P&D point is along the lower boundary of the picking space, inserting a cross aisle moves

approximately half the locations further away. There is no corresponding benefit because

the travel distance to every location is still the rectilinear distance from the P&D point. If

operations are exclusively dual-command, then a middle aisle can be beneficial, depending

on the size of the warehouse (Roodbergen and de Koster, 2001). Our work addresses only

single-command operations in unit-load warehouses.

We believe that all, or nearly all, unit-load warehouses in industry conform to two Un-

spoken Design Rules :

1. Picking aisles must be straight, and parallel to one another.
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2. If present, cross aisles must be straight, and they must meet picking aisles at right

angles.

Given these two rules and a rectangular warehouse space, the designs in Figure 1 are probably

the only options (large warehouses may have more than one middle aisle). Yet both designs

tend to limit productivity in a single-command unit-load warehouse. This leads us to ask,

How should cross aisles and picking aisles be arranged to minimize the expected distance

to pick in a single-command unit-load warehouse?

We answer this question with two design models, which produce designs that, to our

knowledge, were not found in industry before our work, but that offer significant reductions

in expected travel distances over traditional designs.

2 Literature review

The aisle design problem is the first of three related problems in warehouse design. The

second is product allocation, which seeks to put products in the right locations. The third

is the order picker routing problem (and order batching problem, if appropriate), which

determines the best sequence of locations for a worker to visit when building orders.

Fundamental relationships for the length and width of a rectangular warehouse are in

Tompkins et al. (2003) and Heragu (2006). Francis (1967) investigated rectangular warehouse

shapes to minimize picking and construction costs. He assumed rectilinear travel paths,

which “presupposes that there is an orthogonal network of aisles running parallel to the

x and y axes.” Bassan et al. (1980) developed models to determine when it is best to

align picking aisles horizontally or vertically in a warehouse, but they assume the traditional

structure of Figure 1, with all picking aisles parallel. Berry (1968) noticed that floor-stored

pallets should be arranged in lanes with different depths, based on demand characteristics

for the SKU, and that different lane depths can be arranged to form “diagonal gangways”

in the storage space. He did not explore the implications of this observation.
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Especially relevant to our work is White (1972), which proposes non-rectangular ware-

houses with two or more “radial aisles” projecting away from a single P&D point. His goal

was to “approximate Euclidean efficiencies.” Radial aisles are similar to the “fishbone” de-

signs we propose below, however our work is different than White’s in a number of ways:

(1) White’s model is descriptive, taking as input a particular design and producing as out-

put expected travel distance. Our models are prescriptive: they take as input some system

characteristics, such as the distance between aisles and the length and width of the space,

and they produce as output an aisle design that minimizes expected travel distance. (2)

Our designs adhere to the industry standard of rectangular picking spaces, which we believe

makes them more likely to be implemented in practice. (3) We model the picking space as a

set of discrete aisles, whereas White models it as a continuous space. This makes our model

slightly more accurate. And (4), our models account for the width of the cross aisle and

its effects on travel distances; White assumes aisles have zero width. This is an important

difference because, in our experience, the first objection of managers to new aisle designs is

the effect of cross aisles on storage density. We should also add that White does not address

the best shape for a single cross aisle when picking aisles are parallel, which we describe

below.

The warehouse aisle design problem is similar in principle to street design in an urban

area. Arlinghaus and Nystuen (1991) mention the effect of a diagonal link in an otherwise

rectangular grid network, but they do not offer a model. Their concern is the interaction

between pedestrians and automobiles. A famous example of “diagonal travel” in an urban

setting is Broadway in Manhattan, which it affords a benefit over traveling streets and

avenues exclusively.

Product allocation problems in warehouses are of two main types: allocating products

among areas in a warehouse, and allocating products to locations within those areas. The

first type includes work on the forward-reserve problem (e.g, Bartholdi and Hackman, 2008;

Hackman and Rosenblatt, 1990) and more general product allocation models (Heragu et al.,

2005). Product allocation problems of the second type are based on the well-known cube-
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per-order index rule (Heskett, 1963; Kallina and Lynn, 1976), which assigns products with

the highest activity per location to the best locations. In a warehouse like the one that we

study, this leads to storing the “fast movers” in a triangular pattern around the P&D point

(Francis et al., 1992; Tompkins et al., 2003).

Operationally, product allocation models assume some form of dedicated storage, which

reserves particular locations for particular SKUs. Dedicated storage is common in order

picking warehouses because such a policy tends to reduce labor costs, which is the primary

design concern. In unit-load warehouses, dedicated storage is less common because it tends

to reduce storage density, which is a primary design concern. Many unit-load warehouses—

most, in our experience—use a storage policy in which any product may occupy any location,

depending on availability at the time of storage (e.g., “closest-open location” or randomized

policies). Our models assume randomized storage, which was shown by Schwarz et al. (1978)

to approximate closest-open location.

The seminal work in routing order pickers is by Ratliff and Rosenthal (1983), who showed

that routing a worker to pick several items from a rectangular order picking warehouse

(Figure 1, left) is a solvable case of the Traveling Salesman Problem. Roodbergen and

de Koster (2001) extended Ratliff and Rosenthal’s results to the case of rectangular picking

areas with one or more cross aisles (Figure 1, right) in the middle of the picking space. They

found that having a “middle aisle” is not beneficial when retrieving a single item, for reasons

we have already discussed. For “reasonably-sized” pick-lists, a cross aisle allows shorter

tours. For very large pick lists, which are not uncommon in industry, the cross aisle again

confers a dis-advantage because nearly every aisle is traversed in its entirety and the cross

aisle effectively makes the picking aisles longer. Vaughan and Petersen (1999) used heuristic

routing techniques to determine the number of cross aisles in a picking area.

With the exception of White (1972), and possibly Berry (1968), the warehouse literature

uniformly addresses the operation of warehouses with a presupposed design, which is always

some variation of the designs in Figure 1. The presupposition is understandable, because

such designs are so commonly found in practice: We have presented our ideas to more than
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200 warehouse managers, engineers, and logistics executives, and, before our work, none had

ever seen a warehouse with structure different than those in Figure 1.

Our contribution in this work is four-fold. First, we re-introduce a problem fundamental

to the design of warehouses which has lain dormant since the publication of White’s technical

note more than 30 years ago. Second, we propose a warehouse model capable of representing

a cross aisle of any shape, and use it to investigate optimal designs. Third, we demonstrate

as incorrect the established orthodoxy that inserting a cross aisle is not beneficial in a unit-

load warehouse that uses single-commands. Perhaps it is better to say that we show that an

inserted cross aisle of the “right shape” is beneficial, whereas a cross aisle of the traditional

shape is not. Fourth, the warehouse designs we describe are easy to implement, and should

allow distributors to “leverage” the time savings in two ways: by reducing the labor assigned

to complete a set of picks, or by using existing labor to complete the picks more quickly. The

former reduces costs, the latter improves service; which is preferred depends on the goals of

the distributor.

In the next two sections we consider two design problems. The first is to find the optimal

cross aisle for a unit-load warehouse with parallel picking aisles. We show that inserting the

cross aisle defined by this problem yields a significant reduction in expected travel distance

to make a pick. This design is amenable to retrofitting an existing facility. The second

problem is to find warehouse designs with picking aisles that are not parallel. We combine

this flexibility with a V-shaped cross aisle to build a warehouse with a “fishbone” aisle

structure. The expected travel distances for these designs are as much as 20 percent lower

than for equivalent traditional warehouses. This design is better-suited to greenfield designs.

In Section 5 we propose a theoretical bound for improvement of any aisle design over a

traditional warehouse, and show that the improvement offered by fishbone aisles is very

close to the bound. We address implementation issues in the final section.
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3 An Optimal Cross Aisle

The objective is to minimize the expected travel distance for a single command cycle in a

unit-load warehouse that uses randomized storage. We assume there is a single P&D point

at the bottom of the space, in the center. A single P&D point might represent a palletizing

machine, a shrink-wrap machine, or the station where workers get their picking instructions.

We assume workers operate independently and do not interfere with one another; that is,

there is no congestion. In our experience, this is a reasonable assumption because the number

of workers in most unit-load warehouses is not large enough to create significant congestion,

and typical aisles are wide enough to allow passing. (Congestion in order-picking areas is

considered in Gue et al. (2006); Parikh and Meller (2008).)

In the first model, we insert a cross aisle into a traditional warehouse and search for the

shape of the cross aisle that best improves expected travel distance to a location. We model

the cross aisle as a set of connected line segments, where each segment connects adjacent

picking aisles. The objective is to find points of intersection between the cross aisle and

the picking aisles that minimize the expected distance to make a pick or stow. We assume

that all picking aisles are parallel (Unspoken Design Rule 1), but do not require that the

cross aisle be orthogonal to the picking aisles, or even that it be straight (Unspoken Design

Rule 2).

3.1 Model

As represented in Figure 2, consider a set of picking aisles served from a single, centrally-

located P&D point, with each aisle having a continuous and uniform distribution of picking

activity within the aisle. For large warehouses, continuous picking activity is a reasonable

assumption because picking aisles are often more than 50 picking locations long, and we are

interested only in the expected distance to store or retrieve a pallet. The uniform distribution

of activity is in keeping with the randomized storage policy.

We assume the picking space is symmetric about the P&D point, so we focus on mod-
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Figure 2: A representation of the continuous optimal cross aisle warehouse model, with

nominal rack locations shown on the left side.

eling a picking half-space only. The goal is to construct a cross aisle in the half-space that

minimizes the expected distance to make a pick. The P&D point is located in the bottom

left corner of the half-space, when viewing it from the top. The cross aisle intersects the line

that represents each picking aisle i at a point bi, including picking aisle zero, which ends at

the P&D point. A line connecting the points bi forms the cross aisle (see Figure 2).

We assume the cross aisle consumes 2w of each picking aisle (indicated by the gray boxes

in Figure 2), and so inserting it causes the storage space to be larger than it otherwise would

be. Notice that if the cross aisle does not intersect picking aisles at a right angle, the width

of the cross aisle is less than 2w—in fact, the width depends on the choice of the bi’s. We

ignore this detail, and assume a judicious choice of w, so that the resulting cross aisle is

sufficiently wide. In practice, one could easily adjust the choice of w and run the model

again to achieve a satisfactory width.

Assume the picking half-space has n + 1 picking aisles, each with height h, at a distance

a apart (aisle zero extends directly upward from the P&D point). In practice, the picking

half-space would include a cross aisle of width 2w′ at the bottom of the picking space and

perpendicular to the picking aisles. Because every pick regardless of its location would include

w′ travel distance across this aisle, we do not consider it in the optimization model. We do
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include this detail in numerical results on expected travel distance and warehouse space later

in the paper. The warehouse area with an inserted cross aisle is (2n + 1)a × (h + 2w′) and

for a traditional warehouse the area is (2n + 1)a× (h− 2w + 2w′).

By Pythagoras’ Theorem, the portion of the cross aisle between picking aisles i− 1 and

i has length

di =
√

a2 + (bi − bi−1)2. (1)

We do not require bi > bi−1, and so the model is free to construct a cross aisle taking on

any continuous path. Although di is a function of decision variables bi and bi−1, for ease of

presentation we choose not to use the more formal di(bi, bi−1).

Let qi < bi be the point along picking aisle i at which a worker is indifferent to traveling

either along the bottom cross aisle (hereafter, bottom-aisle) and up the picking aisle, or

along the cross aisle and down (see Figure 2). That is,

ia + qi = b0 +
i∑

k=1

dk + (bi − qi),

or,

qi =
1

2

(
b0 +

i∑
k=1

dk + bi − ia

)
. (2)

We require q0 = 0, by definition. Again, qi is a function of b0, b1, . . . , bi, but we choose the

simpler qi for clarity of presentation.

Let Ci(y,~b) be the travel distance (hereafter, travel cost) to pick an item at distance y

from the bottom of aisle i, given a vector ~b = {b0, b1, . . . , bn} and assuming the cross aisle

consumes distance 2w of each picking aisle. We divide the picking aisle into three regions,

corresponding to different travel paths for shortest retrieval. For y < qi, it is best to travel

along the bottom-aisle and up. For qi ≤ y ≤ bi, travel is along the cross aisle and down; for

y ≥ bi, travel is along the cross aisle and then up. We require w ≤ bi ≤ h−w to ensure that

each picking aisle retains h− 2w of picking length.

Since we assume a uniform pick density, the expected travel cost for a pick in aisle i ≥ 1

is

E[Ci(~b)] =
1

h− 2w

∫ h

0
Ci(y,~b) dy

9



=
1

h− 2w

[∫ qi

0
Ci(y,~b) dy +

∫ bi−w

qi

Ci(y,~b) dy +
∫ h

bi+w
Ci(y,~b) dy

]

=
1

h− 2w

[∫ qi

0
(ia + y) dy +

∫ bi−w

qi

(
b0 +

i∑
k=1

dk + bi − y

)
dy+

∫ h

bi+w

(
b0 +

i∑
k=1

dk + y − bi

)
dy

]

=
1

h− 2w

[
qi

[
ia +

1

2
qi

]
+ (bi − w − qi)

[
b0 +

i∑
k=1

dk +
1

2
(bi + w − qi)

]
+

(h− bi − w)

[
b0 +

i∑
k=1

dk +
1

2
(h− bi + w)

]]
,

where di and qi are given in (1) and (2), respectively. The expression has the following

interpretation: if xy ≤ qi, the expected travel is along the bottom ia units, then up qi/2

units; if qi ≤ y ≤ bi−w, expected travel is up to b0, along the cross aisle
∑i

k=1 dk units, then

down w + (bi − w − qi)/2 units; if y ≥ bi, travel is up to b0, along the cross aisle
∑i

k=1 dk

units, then up w + (h − bi − w)/2 units. Each expected travel distance is weighted by the

length of the appropriate region.

The expected travel cost to pick an item in aisle zero is different because there is no

travel along the cross aisle. For b0 ≥ w, we have two possible regions—one below the cross

aisle, and one above. For a uniform picking density, the expected travel cost is simply the

weighted sum of costs to make a pick from the center of each region.

E[C0(~b)] =
b0 − w

h− 2w

(
1

2
(b0 − w)

)
+

h− b0 − w

h− 2w

(
b0 + w +

1

2
(h− b0 − w)

)
=

h2 − 4b0w

2(h− 2w)
.

The expected travel cost for a pick in the full picking space includes a term for a pick in

aisle zero, plus (due to symmetry) two times the terms for remaining aisles in the half-space,

E[C(~b)] = p0E[C0(~b)] + 2
n∑

i=1

piE[Ci(~b)],

where pi = 1/(2n + 1) is the probability of the pick being in aisle i, for i = 0, . . . , n.

One final detail: if qi > bi − w, the cost expression E[Ci(~b)] is malformed, and so we

require qi ≤ bi − w. This constraint is tight only if w is large with respect to h, or if bi is

very small, neither of which is true for practical problems. We can restate this constraint as
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bi ≥ w+qi, which is stronger than the previous constraint bi ≥ w. The optimization problem

is to choose ~b = {b0, . . . , bn} such that E[C(~b)] is minimized, subject to w + qi ≤ bi ≤ h−w,

for all i.

Note that we have chosen not to formulate the problem with a network model, with

arcs connecting points between adjacent aisles and a “shortest path” representing the cross

aisle. Doing so would have been appealing for two reasons: (1) it might be easy to solve

to optimality, and (2) a warehouse full of pallet rack imposes discrete locations for aisles

anyway. Unfortunately, this approach is not possible because we cannot assign a priori

costs to arcs that would make up the cross aisle. For example, the cost of an arc should

represent the level of flow along the arc, but that flow cannot be specified until the flows

along the cross aisle beyond that arc are specified. Similarly, the flow along an arc cannot

be specified until the aisle arcs before it are specified, because they determine how costly it

is to get to that arc. Because costing the arcs requires that the entire cross aisle be specified

a priori, the problem does not lend itself to constructive graph algorithms or to a sequential

optimization technique such as dynamic programming.

We use instead numerical, nonlinear optimization techniques to solve our continuous for-

mulation, and it solves easily. We applied a number of standard algorithms in Mathematica

and found no measurable difference among them. Although we cannot prove optimality for

our solutions, their structure is intuitive and, we believe, likely optimal or close to it. More-

over, it is likely that, in practice, any solution would have to be adjusted anyway to account

for the discrete nature of pallet locations.

3.2 Structure of solutions

There is a value of w greater than which we would choose not to have a cross aisle, because

its presence pushes some locations so far from the P&D point that the additional distance

overwhelms the advantage of having the cross aisle. Unfortunately, that “critical value” of

w depends on the vector ~b, which in turn depends on w, and so we are unable to compute

it directly. Fortunately, the model handles this difficulty implicitly: if w is greater than the
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critical value, the cross aisle is along the top of the picking space, effectively making it no

cross aisle at all.

Analytical results on the structure of optimal solutions are difficult because of the inter-

dependency between the vector ~b and the critical value of w for which we should choose not

to have a cross aisle. However, we can show that

Proposition 1 If w = 0, an optimal solution has b0 = 0; that is, the optimal cross aisle

begins at the P&D point.

Proof. By contradiction. Assume there exists an optimal cross aisle in a picking half-

space that intersects aisle 0 at a point b0 > 0. Any pick that uses the cross aisle requires

b0 +
√

a2 + (b1 − b0)2 travel to get to the first aisle, which is greater than
√

a2 + b2
1 by the

triangle inequality; that is, letting b0 = 0 reduces the expected distance to any pick using

the cross aisle, without changing the distance to any pick not using it. Therefore, the cross

aisle is not optimal, a contradiction. 2

The result agrees with our intuition that the purpose of a cross aisle is to get the worker

into the interior of the picking space as quickly as possible.

Examples. Assume that with appropriate clearances a pallet occupies a 4′ × 4′ square,

and picking and cross aisles are 10 feet wide. These values will vary in practice, depending

on pallet sizes, type of picking vehicles, and so on, but our choices represent the majority of

warehouses in industry (Tompkins et al., 2003). In what follows, our unit of measure is a

pallet; e.g., aisles are 2.5 pallets wide, and perhaps 50–100 pallets long.

Figure 3 shows solutions to our model for two warehouses, one with picking aisles 100

pallets long, the other 50. Due to the shape of the cross aisle, we refer to this design as

the “Flying-V.” The upper design has 21 picking aisles, the lower has 41 aisles. Distance

between centers of picking aisles is equivalent to 4.5 pallets (about 18 feet). Dots in the figure

correspond to bi values from the model. The upper design has expected travel distance

to a pick 10.0 percent lower than a traditional warehouse (Figure 1, left) with the same
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Figure 3: Results of the model for two random-storage, unit-load warehouses with picking

aisles 100 and 50 pallets long.
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Figure 4: Percent improvement for warehouses with a Flying-V cross aisle, compared to a

traditional warehouse.

number and total length of picking aisles. The lower design offers an advantage of 8.4

percent. These comparisons keep the picking positions constant, but increase the size of the

warehouse to account for inserting a cross aisle (the Flying-V warehouse spaces are 4.1%

and 8.5% larger, respectively, than in comparable traditional designs). The main insight

behind these designs is that a cross aisle that cuts diagonally across the picking aisles affords

“Euclidean efficiencies” White (1972), which allows workers to get to most picking locations

more quickly. Workers would prefer strict rectilinear travel only to locations near the bottom

of the warehouse.

Figure 4 illustrates the advantage of Flying-V cross aisles for warehouses of several sizes.

In general, as the number of aisles increases, the advantage of inserting a cross aisle increases,

until the warehouse is so large that travel to outlying points is dominated by travel to the

picking aisle rather than within the picking aisle. For warehouses this large, travel along the

cross aisle is almost equal to travel along the bottom aisle, and little advantage is gained

from having the cross aisle. Unit-load warehouses in industry typically have 20–40 aisles,

which is the range for which this design confers the greatest advantage. Warehouses with

longer picking aisles stand to benefit more from Flying-V cross aisles than do those with
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short picking aisles.

4 Fishbone Aisles

Next, we relax Unspoken Design Rule 2, which requires that all picking aisles be parallel. In

the most general case, picking aisles can take on any angle, but here we consider only vertical

and horizontal orientations. We also restrict ourselves to a cross aisle that extends in two

diagonals away from the P&D point. We show in the next section—through a theoretical

lower bound on expected travel cost—that these constraints do not keep us far from an

optimal solution.

4.1 Model

Because the picking space is symmetric, we focus again on a picking half-space. Consider a

half-space with n vertical aisles, each of height h and separated by distance a. For now, we do

not include an aisle extending from the P&D point. Using insights from the previous model,

we insert a straight, diagonal cross aisle passing through the P&D point. Let 0 ≤ b ≤ h−w

be the point of intersection of the cross aisle with the rightmost (n-th) picking aisle. Using

the P&D point as the origin in a coördinate system, we see that the cross aisle has slope

m = b/na. The case of the diagonal cross aisle having a greater slope, and therefore reaching

the top of the warehouse before reaching the rightmost aisle, is easily handled by “inverting”

the space (thereby making the new height equal to na) and re-solving. The cross aisle

consumes distance w of each picking aisle (see Figure 5).

We break the total expected travel cost into three components: aisle zero, which extends

upward from the P&D point, upper aisles (with respect to the cross aisle), and lower aisles.

We assume again that picking activity is distributed uniformly among and within all aisles;

therefore, expected cost to make a pick in aisle zero is simply

E[C0] =
1

h− w

∫ h

w
y dy = (h + w)/2.
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Figure 5: A representation of the continuous model for warehouses with fishbone aisles, with

nominal rack locations shown on the left. Figures on the bottom illustrate changes in aisle

structure with different values of the parameter b.

The travel cost for picking in upper aisle i, Cu
i (y, b), is the required distance along the

diagonal aisle, plus the travel up to point y. Between each vertical picking aisle, the cross

aisle has distance (see Figure 5),

dv =
√

a2 + (am)2 =

√√√√a2 +

(
b

n

)2

.

The expected travel cost of a pick in an upper aisle is,

E[Cu
i (b)] =

1

h−mia− w

∫ h

mia+w
(idv + y −mia) dy

= idv +
1

2
(h−mia + w)

= i

√√√√a2 +

(
b

n

)2

+
1

2

(
h− ib

n
+ w

)
. (3)

For the lower picking area we have,

dh =
√

a2 + (a/m)2 =

√√√√a2 +

(
a2n

b

)2

.
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Lower aisle j begins at position aj/m and ends at position an, so

E[C`
j (b)] =

1

an− aj/m− w

∫ an

aj/m+w
(jdh + x− aj/m) dx

= jdh +
1

2
(an− aj/m + w)

= j

√√√√a2 +

(
a2n

b

)2

+
1

2

(
an− ja2n

b
+ w

)
. (4)

Both (3) and (4) agree with the intuition that expected travel cost for a pick in an aisle is

travel to the picking aisle plus half the length of the aisle.

Notice from Figure 5 that there are values of b for which the distance between the center

of the cross aisle and the end of a potential vertical or horizontal aisle is less than w; that

is, there would be effectively no picking aisle at all. For a horizontal aisle, this happens

when b is slightly greater than a multiple of a. For a vertical aisle, if b = h − w and h is

small with respect to na, the length of the rightmost vertical aisles could be less than w.

Computationally, an aisle shorter than w causes (3) or (4) to be negative, and so we define

the length of a vertical aisle lvi = max{h − mia − w, 0} and for a horizontal aisle lhj =

max{an− aj/m−w, 0}. Note that the number of aisles having non-zero length in both the

upper and lower regions is a function of parameter b.

Let U be the index set of picking aisles in the upper region (perhaps with length zero),

and L the index set in the lower region. For a uniform picking density, the probability pi of

picking in aisle i equals the length of that aisle divided by the sum of lengths of all picking

aisles. For an aisle in the upper region,

pu
i =

lvi
h− w + 2(

∑
k∈U

lvk +
∑
j∈L

lhj )
.

For an aisle in the lower region,

p`
j =

lhj

h− w + 2(
∑
i∈U

lvi +
∑
k∈L

lhk)
.

Expected travel cost for a pick in a fishbone warehouse is comprised of a term for the

center (vertical) aisle, plus two times the terms for upper and lower aisles (to account for
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Figure 6: Plots of the objective function as the parameter b varies: the plot on the left

represents typical values for aisle length and width; on the right, an example of non-convexity

for unrealistic values of parameters. (Note the significant difference in scale of the two plots.)

both half-spaces),

E[C(b)] = pu
0E[C0] + 2

∑
i∈U

pu
i E[Cu

i (b)] +
∑
j∈L

p`
jE[C`

j (b)]

 . (5)

The optimization problem is to choose b such that E[C(b)] is minimized, subject to 0 ≤ b ≤

h− w.

The problem has only one variable, but for some (admittedly unrealistic) values of h, n,

and a, the objective function is not convex (see Figure 6). Therefore, we apply numerical

nonlinear optimization techniques, as before. In practice, it is easy to run the model, then

inspect a plot of the objective function value as a function of b to ensure the solution is not

a local optimum. (It would also be possible to require b to take on integer values, and then

enumerate the solution space.) We have solved the fishbone design problem for warehouses

of many practical sizes, and the optimal b = h−w in every case. The cases where the optimal

b is slightly less than h− w include warehouses with relatively few, very long vertical aisles

and an unrealistically narrow cross aisle. Figure 6 illustrates such a warehouse with picking

aisles 150 pallets deep and cross aisles 3 feet wide.
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Figure 7: A warehouse with fishbone aisles (note than an implementation of this design in

practice would likely clear away some storage racks near the P&D point).

4.2 Example Fishbone Designs

For example solutions, we assume standard pallet sizes and aisle widths as before, and we

measure distances in units of pallets. For a fishbone design we must consider the value of w

carefully, because picking aisles extend from the cross aisle at different orientations. This is

easily adjusted in the model.

Example. Figure 7 shows the solution for the equivalent of 21 vertical picking aisles, each

having length of 50 pallet locations. In this case, the optimal b = h − w. The intuition is

that such designs have a cross aisle that cuts through the “middle” of the picking space, and

therefore, because every pick uses the cross aisle, it should be centrally placed.

It is important to recognize that as b increases and the slope of the cross aisle increases,
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Figure 8: Total length of picking aisles for fishbone designs with h = 50 and different values

of b.

the total length of picking aisles decreases slightly (see Figure 8). Therefore, we must be

careful when interpreting a solution. This manifests an important tradeoff between storage

density and expected retrieval distance, which we must consider when comparing fishbone

designs with a traditional warehouse. To make a fair comparison, we first model a fishbone

warehouse, then model a traditional warehouse with the same number of vertical aisles,

with the length of the picking aisles adjusted so that the total aisle length equals that

of the fishbone design (this also provides for an accurate comparison of the space of each

design). The design in Figure 7 has expected travel cost 20.3 percent lower than an equivalent

traditional warehouse (although the fishbone warehouse occupies 3.0% more space). Figure 9

shows how the potential travel cost advantage varies for different configurations. In practice,

unit-load warehouses range in size between 20 and 40 aisles.
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Figure 9: Percent improvement of a fishbone aisle design over a traditional design for several

configurations.

5 Bounds

Warehouses with Flying-V cross aisles or fishbone aisles offer a significant potential savings

in retrieval time, but how close are they to optimal? Here we offer a lower bound on travel

distance based on an imaginary warehouse in which items are distributed uniformly and

continuously throughout the picking space, and workers can “fly” directly to and from any

location. We use the bound to compute the maximum possible improvement of any design

over a traditional warehouse, in which travel is rectilinear. The bounds are similar to well-

known results in urban planning, which compare the expected differences between rectilinear

travel and Euclidean travel in, for example, an ambulance coverage area (Larson and Odoni,

1981).

Without loss of generality, we can consider a rectangular half-warehouse with dimensions

a × b and a single P&D point in the bottom-left corner. Picking activity is distributed

continuously and uniformly throughout the space. We used Mathematica to compute the
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expected Euclidean distance from a point in the rectangle to the P&D point,

1

ab

∫ a

0

∫ b

0

√
x2 + y2 dy dx =

1

6ab

(
2ab

√
a2 + b2 + a3 log

(
b +

√
a2 + b2

a

)
+ b3 log

(
a +

√
a2 + b2

b

))
.

If travel is rectilinear, as in a traditional warehouse, expected distance would be,

1

ab

∫ a

0

∫ b

0
(x + y) dy dx =

1

2
(a + b).

For a square picking half-space with unit-length sides, which has the intuitive appeal of

being “balanced” (Francis, 1967, showed this to be an optimal shape, under certain assump-

tions), an imaginary warehouse has expected distance to make a pick,∫ 1

0

∫ 1

0

√
x2 + y2 dy dx =

1

3

(√
2 + sinh−1(1)

)
≈ 0.7652,

If travel is rectilinear, as in a traditional warehouse, expected distance is∫ 1

0

∫ 1

0
(x + y) dy dx = 1.

The implication is that, if picking activity is distributed “approximately uniformly” in a

square picking half-space, the best possible aisle design can offer no more than 1− 0.7652 ≈

23.5 percent reduction in expected travel distance. A similar result can be derived from

results in Francis et al. (1992, Ch. 5): the best possible improvement in a warehouse with

a semicircular shape is 24.8 percent. (It is worthwhile noting that a traditional unit-load

warehouse—with or without cross aisles—performs as badly as possible, when average dis-

tance is the performance metric and workers travel to picks along shortest paths.)

The result is different for non-square picking half-spaces. Figure 10 illustrates the benefit

of direct, “travel-by-flight” over the rectilinear travel required in a traditional warehouse as a

function of the ratio of width to height of the picking space (labeled “Bound”). The benefit

has its maximum at 2:1, which corresponds to the commonly found square half-space (and

also conforms to the results in Francis, 1967). As the ratio increases, the advantage of direct

travel decreases.

The implication is that the potential advantage of better aisle designs is greatest for the

warehouse sizes most common in industry. Moreover, the 23.5 percent potential improve-

ment with respect to a theoretical warehouse space suggests that the fishbone design, which
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Figure 10: Percent improvement of fishbone and Flying-V warehouses over the traditional

design.

Figure 11: An illustration of fishbone travel (solid black lines) and direct (dashed lines).

showed a 20.3 percent improvement for a square half-warehouse, is close to optimal. Ex-

ample travel paths represented in Figure 11 show why this is the case: fishbone designs are

particularly good for accessing locations near a 45-degree diagonal from the P&D point, the

same locations for which rectilinear travel is especially poor.
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6 Implementation Issues and Conclusions

Designing a distribution center is a complex task, requiring engineers to design storage

areas, order picking areas, and material handling systems with the goal of meeting service

requirements at minimum cost. Nearly every distribution center has a unit-load, or pallet,

storage area where products are stored before being picked, or before being moved to other

order picking areas in the distribution center. We argued that existing warehouses conform

to unspoken design rules, which tend to increase travel for workers.

We relaxed two of these design rules and found that there is much to be gained by

considering new aisle configurations for unit-load warehouses. Designs we develop in this

paper could be useful in any unit-load warehouse with a single, dominant P&D area.

Our results suggest that, for unit-load warehouses, new aisle designs could lead to higher

throughput, or to significantly reduced costs of picking. For new warehouses, designers must

weigh the value of reduced operating costs of these designs with the fixed cost of needing a

slightly larger warehouse. In some situations, bulk areas are seldom visited, and a focus on

density rather than retrieval cost is appropriate; but for many applications, we believe labor

costs are high enough to justify new designs.

We offer two new designs: The first inserts a “Flying-V” cross aisle into a warehouse

with parallel picking aisles. Contrary to the established orthodoxy of unit-load warehouse

design, inserting a cross aisle with this shape reduces the expected travel distance for workers,

and that by about 8–12 percent, depending on dimensions of the warehouse. The second

design has “fishbone” picking aisles which extend horizontally and vertically from diagonal

(“spine”) cross aisles. We showed that this design can reduce expected travel cost by more

than 20 percent, and that this is close to optimal.

If fishbone designs offer lower expected retrieval distances than Flying-V designs, why

even consider the latter? Because, they have several potential advantages:

• Access into and out of the space is easier, which is a benefit if workers occasionally

must make trips to or from points other than the P&D point.
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• Forklift traffic is distributed over two cross aisles (diagonal and bottom) in a Flying-V

design, unlike in the traditional warehouse and the fishbone warehouse, where all traffic

is concentrated along one cross aisle.

• Workers are less likely to become disoriented in a Flying-V warehouse because it is

similar to a traditional warehouse. For an industry in which worker turnover is high

and experience is low, this can be an important benefit.

• The numbering scheme for picking locations is more intuitive than it would be for a

fishbone warehouse.

• It is possible to retrofit an existing traditional warehouse with a Flying-V cross aisle,

simply by removing appropriate portions of rack. On this point, we acknowledge

the probably insurmountable psychological barrier of paying money to remove “good

storage locations.” Nevertheless, it is possible, and should be considered if storage

capacity allows and there is a significant operational advantage.

We should reiterate that our designs apply only to unit-load warehouses with a single,

centrally-located P&D point, and are based on an assumption of random storage. Interesting

extensions include models for order picking warehouses, in which workers visit multiple

locations per tour, and for warehouses with multiple P&D points and non-uniform storage

policies.
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