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Abstract

In a warehouse that uses dual-command operations, workers travel loaded from the
pickup and deposit (P&D) point first to a location to store a pallet, then to a second
location from which they pick a pallet and return to the P&D point. We develop
expected travel distance expressions for such operations and use them to analyze three
common warehouse designs. Our results indicate that the best of the three is — in
our experience — the one least commonly found in practice. We also show that the
optimal placement of a “middle cross aisle” in the most common design is, in fact, not
in the middle.

1 Introduction

Unit-load warehouses store pallets or other unit-loads of goods in locations commonly ar-

ranged in parallel aisles. Examples include third-party transshipment warehouses, beverage

and grocery distributors, and appliance manufacturers. Many warehouses that ship in smaller

units, such as cartons or pieces, also have a portion of their activity dedicated to unit-loads.

For example, the reserve area of a retail distribution center may be used to receive and store

1



pallets until they are needed to replenish a fast-pick area, when they are then “shipped” to

another part of the warehouse (Bartholdi and Hackman, 2007).

Unit-load warehouses are especially important in global retail supply chains, where import

distribution centers (DCs) near ports are prevalent and large. For example, within a 125

mile radius of the Port of Savannah, the import DCs of just 23 retailers comprise more than

20 million square feet of warehouse space, including 4 warehouses of more than 2 million

square feet each (Foltz, 2007). These warehouses are comprised almost entirely of pallet

storage areas, which consist of floor storage, in which pallets are stacked directly on top of

one another in parallel aisles, and single- or double-deep pallet racks. Because these DCs

are so large, the distances traveled to perform operations are also large.

Two features of a unit-load warehouse are of interest to us. The first is the operational

protocol for workers storing and retrieving pallets. In single-command operations, workers

travel from a pickup and deposit (P&D) point to a single location in the warehouse, where

they store or retrieve a single pallet before returning. One half of their travel is unloaded, and

therefore unproductive. A second protocol is to interleave storage and retrieval operations to

form a dual-command cycle, in which workers perform a storage operation and then continue

directly to a retrieval location before returning to the P&D point. Interleaving reduces the

empty forklift travel from half of the total travel distance to about one third. We refer to

the travel distance between the storage and retrieval locations as “travel-between.”

The second feature of interest to us is the arrangement of storage locations and aisles,

which we call the layout. In our experience, the three most common layouts are those in

Figure 1. Layout A (Figure 1a) has parallel picking aisles and orthogonal cross aisles at each

end of the picking aisles. Layouts B and C (Figures 1b and 1c) are similar to Layout A,

but with a cross aisle inserted halfway along the picking aisles. Layouts B and C can be

viewed as the same layout with the P&D point in a different location; but there are reasons

to consider them as distinct designs, which we discuss below. In practice, Layouts B and C

could also have more than one inserted cross aisle, but we consider only those with a single

cross aisle, which are most common by far.

Layout A is a better choice that Layout B for a unit-load warehouse that performs strictly

single-command cycles. Roodbergen and de Koster (2001b) point out that if the number

of picking locations is fixed, inserting a middle cross aisle increases the expected travel to

a single pick because it pushes half the locations farther from the P&D point. However,

they show that for “practically-sized” picklists, a middle cross aisle reduces travel distances

because it creates more possible routes for a picking tour. The benefit of the middle cross

aisle is eliminated when the size of the order is large with respect to the warehouse size,

because the worker tends to traverse every picking aisle and not to use the cross aisle at
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(a)  Layout A (b)  Layout B (c)  Layout C

P&D P&D P&D

Figure 1: Warehouse Aisle Layouts

all (Roodbergen and de Koster, 2001b). Therefore, Layout B is a potentially better design

for dual-command operations. And when considering the choice between Layouts A and C,

we will show that if Layout C is configured properly, Layout A no longer has an advantage

in terms of single-command cycles. Furthermore, due to the inserted cross aisle, Layout C

retains its potential improvement for dual-command operations.

Our goal is to determine which of these three common layouts is best for dual-command

operations. To do so, we develop analytical dual-command travel distance models for optimal

paths in all three layouts. With these models, we show that the determination of which layout

is best depends on the required number of storage locations, but that Layouts B and C are

superior to Layout A in almost every case. Layout C is the best choice or near-best choice

for a wide range of sizes, yet—in our experience—it is the least popular in practice. Along

the way, we investigate the best number and length of picking aisles for a required number of

storage locations. We also show that the optimal placement of the “middle aisle” in Layout B

is not exactly in the middle, but slightly above it.

In the next section we review what is known about the three designs, mostly in the context

of single-command operations. We also examine the literature on dual-command operations.

In Section 3 we develop analytical expressions for travel-between distance, which we use

in Section 4 to investigate the optimal number and length of aisles for layouts under both

single- and dual-command travel. In Section 5, we compare the performance of the three

designs for dual-command travel and show when it is best to have a middle aisle. We offer

concluding remarks in Section 6.
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2 Previous Research

Researchers have modeled single-command travel distance in Layout A (Francis, 1967; Bassan

et al., 1980) and Layout C (Bassan et al., 1980) and have presented some well-known results

on optimal warehouse shape and P&D location. The few papers that model dual-command

travel consider only Layout A (Mayer, 1961; Malmborg and Krishnakumar, 1987), and do

not use their results to determine warehouse design parameters, such as number and length

of aisles. Mayer (1961) also restricts cross aisle travel to the bottom cross aisle, while we

assume the cross aisle that provides the shortest path between pallet locations is used. We

are unaware of any published analytical models for the optimal dual-command travel distance

in Layouts B and C.

Dual-command travel is a special case of the orderpicking problem. For Layout A, Ratliff

and Rosenthal (1983) develop an efficient dynamic programming algorithm to determine the

optimal pick tour, which provides the shortest travel distance to a given set of pick locations.

Roodbergen and de Koster (2001b) extend their algorithm to consider warehouses with a

middle cross aisle (and provide numerical results for Layout B). Since these algorithms

determine the optimal tour for just one instance, simulation is required to estimate the

expected tour length. That is, there is no closed-form evaluation method for the expected

length of an optimal tour for a general number of picks.

Hall (1993) develops a lower bound for the optimal tour length in Layout A for a general

number of picks, but we have not found it to be very accurate for a small number of picks.

With the exception of Hall’s bound, the analytical expressions for expected travel distance in

orderpicking are based upon routing heuristics, rather than optimal tour generation. Among

those who assume a random storage policy, Hall (1993) and Roodbergen and Vis (2006)

model travel in Layout A, Le-Duc and de Koster (2007) model travel in Layout C and

Roodbergen et al. (2007) consider Layouts A, B, and C. Analytical models for turnover-

based storage policies are developed by Hwang et al. (2004) for Layout A and by Caron

et al. (2000b) for Layout C.

Simulation is used to estimate expected travel for optimal and heuristic routes for ran-

dom storage by Petersen (1997) and de Koster and van der Poort (1998) in Layout A, and

by Vaughan and Petersen (1999) and Roodbergen and de Koster (2001a,b) in Layout B.

Turnover-based storage is considered by Petersen and Schmenner (1999) for Layout A and

by Caron et al. (2000a) for Layout C. The expressions we develop are the first that describe

optimal dual-command travel in Layouts A, B and C.

Our modeling of travel in Layout A could be considered a special case of a multi-aisle

automated storage and retrieval system (AS/RS). In a multi-aisle system, a single crane
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services multiple aisles, and therefore must transfer from aisle to aisle. Several authors have

addressed this problem. For example, Hwang and Ko (1988) model expected single-command

and dual-command travel time in such a system, and as is typical, assume the crane travels

simultaneously in the horizontal and vertical directions. By ignoring vertical travel in their

models, the models can be used to provide an estimate of the expected travel in Layout A.

However, because they assume a corner input/output point (we assume the P&D point is

optimally located in the bottom center) and restrict cross aisle travel to the bottom aisle for

dual-command cycles, their estimate provides an upper bound.

3 Expected Dual-Command Travel Distance Models

In this section we model the expected single and dual-command travel distances in Lay-

outs A, B and C, assuming optimal travel paths beginning and ending at a single, central

P&D location. We assume a random storage policy, which approximates the “closest-open-

location” storage rule (Schwarz et al., 1978). This type of storage assignment leads to the

most efficient use of storage space and is commonly used in unit-load storage, where one of

the primary goals is to maximize space utilization.

We are interested in expected horizontal travel distance; therefore, we do not model the

acceleration and deceleration of the vehicle, time to load and unload, or vertical travel to

upper pallet positions. Workers can travel in either direction in an aisle and can change

directions within an aisle. We assume that the picking aisles are sized such that the racks

on each side of the picking aisle can be accessed, but that the lateral travel within the aisle

is negligible. That is, the travel distance to a given pallet position is the same as the travel

distance to a pallet position directly above or directly across the picking aisle. A “location”

in the warehouse therefore refers to two columns of pallet positions, one on each side of the

picking aisle. For example, a warehouse with 21 picking aisles that are 50 pallets long, would

have a total picking aisle length T = 1050. This implies that there are 2100 pallet positions

on each level of the storage racks. We model the warehouse as a set of discrete picking aisles,

with continuous picking activity in each aisle, and picking uniformly distributed within and

among all aisles. The storage and retrieval requests are assumed to be independent, and

processed on a first-come-first-serve basis.

3.1 Layout A: Picking Aisles Perpendicular to the Front Wall

Layout A, as depicted in Figure 2, has parallel picking aisles that are perpendicular to the

front wall, but has no cross aisle inserted into the picking space. The travel paths along the

aisles are indicated by solid black lines. Two locations are indicated in black in Figure 2,
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where the location on the left is a distance x from the bottom of aisle i, and the location

on the right is a distance y from the bottom of aisle j. The length of each picking aisle is L

and the distance that must be traveled to enter a picking aisle from the cross aisle is v, or

half the width of the cross aisle. The warehouse has n picking aisles, where n can be odd or

even.

x

L

y

a
is

le
i

v

v

P&D

a
is

le
j

a

Figure 2: Layout A

The expected dual-command travel distance can be expressed as the sum of the expected

single-command travel distance and the expected travel-between distance, E[DC] = E[SC]+

E[TB ]. To determine E[SC], we consider two components of travel: cross aisle travel, and

picking aisle travel (including the distance v to enter/exit the picking aisles, if necessary).

Since we assume uniform picking activity, the expected picking aisle travel distance in a

single-command cycle is 2(L/2 + v) = L + 2v. To determine the expected cross aisle travel

distance, we must assume a P&D location. We assume the P&D point is optimally located

in the middle of the bottom cross aisle (Francis, 1967; Roodbergen and Vis, 2006), as shown

in Figure 2, and that there is an even number of aisles. The expected cross aisle travel for an

even number of aisles is an/2. (The expected cross aisle travel for an odd number of aisles

is a(n2 − 1)/2n.) Thus, the expected single-command travel distance for Layout A with an

even number of aisles is

E[SCA] = L + 2v +
an

2
. (1)

The travel between two locations does not depend on the location of the P&D point or

whether the number of picking aisles is even or odd. If the two locations are in the same

picking aisle (i = j), travel-between distance, or TB , will be |x− y|. If the locations are in

6



different aisles, as pictured, travel can use either the top cross aisle or the bottom cross aisle.

If the bottom cross aisle is used, then TB = x + v + a|i− j|+ v + y, where a is the distance

between picking aisles. If the top cross aisle is used, TB = (L−x)+v+a|i− j|+v+(L−y).

To determine the expected travel distance between two random locations, we again consider

two components: cross aisle travel, and picking aisle travel. Since we assume uniform picking

activity, the expected cross aisle travel distance is

a(n2 − 1)

3n
, (2)

and the expected picking aisle travel distance is

1

n

(
L

3

)
+

n− 1

n

(
2

3
L + 2v

)
. (3)

The derivations of (2) and (3) are found in the appendix. Given (2) and (3), the expected

travel distance between locations in Layout A is

E[TBA] =
1

n

[
L

3
+ (n− 1)

(
2

3
L + 2v

)]
+

a(n2 − 1)

3n
,

and the expected dual-command travel distance with an even number of aisles is

E[DCA] = L

(
5n− 1

3n

)
+ v

(
4n− 2

n

)
+ a

(
5n2 − 2

6n

)
. (4)

The first term in (4) corresponds to the expected travel along the picking length, the

second term is the expected distance to traverse the width of the cross aisles, and the third

term is the expected cross aisle travel. To evaluate the efficiency of dual-command cycles,

relative to single-command cycles, we compare 2E[SC] to E[DC]. While the exact savings

depends on the values of L, v, and a, our empirical studies show a range of 16–33%, over

a variety of warehouse shapes and sizes, with the maximum savings occurring for very tall

warehouses with few aisles.

It can be shown that the expected single-command travel distance, expressed by (1), is

equivalent to the models developed by Roodbergen and Vis (2006) for picking tours (when

the number of picks equals one). For dual-command travel (two picks) their models produce

slightly longer distances than (4) (6–12% longer for their examples), which is to be expected

since they model the S-shaped and largest-gap routing heuristics and we model an optimal

path.
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3.2 Layout B: Picking Aisles Perpendicular to the Front Wall with

a Middle Cross Aisle

Layout B, as depicted in Figure 3(a), has a middle cross aisle of width 2v, half-way between

the top and bottom cross aisles. As before, the warehouse has n picking aisles, each with

picking length L, however it is slightly larger due to the middle cross aisle. Given a P&D point

at the bottom center of the warehouse and an even number of picking aisles, the expected

single-command travel distance for Layout B is the expected single-command travel distance

for Layout A, plus the expected travel distance across the middle cross aisle, or 2v (because

the middle cross aisle must be traversed for 50% of the locations). Therefore, from (1) we

get

E[SCB] = L + 4v +
an

2
. (5)

x

L/2

2v

L/2

y+2v

a
is

le
 i

v

v

P&D

a
is

le
 j

(a)

x

L/2

2v

L/2

y+2v

aisle i

aisle j

P&D

(b)

Figure 3: (a) Layout B: Picking Aisles Perpendicular to Front Wall (b) Layout C: Picking
Aisles Parallel to Front Wall

As before, to determine the expected travel-between distance for Layout B we consider

cross aisle travel and picking aisle travel. The expected cross aisle travel distance is identical

to the cross aisle travel in Layout A and described by (2). To determine the expected picking

aisle travel, we condition on whether the locations are above or below the middle cross aisle.

The expected picking aisle travel distance in this case, which is derived in the appendix, is

1

n

(
L

3
+ v

)
+

n− 1

n

(
5

12
L + 2v

)
. (6)
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The total expected travel distance between two locations for Layout B is then

E[TBB] =
1

n

[
L

3
+ v + (n− 1)

(
5

12
L + 2v

)]
+

a(n2 − 1)

3n
, (7)

and the resulting dual-command travel distance for an even number of aisles is

E[DCB] = L

(
17n− 1

12n

)
+ v

(
6n− 1

n

)
+ a

(
5n2 − 2

6n

)
. (8)

Comparing 2E[SC] to E[DC], the total savings gained by using dual-command travel in

Layout B depends on the values of L, v, and a. However, we have seen a range of 19–33%

reduction in dual-command travel distance over a variety of warehouse sizes and shapes.

These savings are consistently higher than for similarly-sized warehouses of Layout A, which

can be attributed to the fact that travel-between is much more efficient in Layout B, therefore

dual-command travel is correspondingly more efficient when compared to single-command

travel.

3.2.1 Optimal Placement of the Middle Cross Aisle

The middle aisle in our model is equally-spaced between the top and bottom cross aisles,

which is consistent with other research (Vaughan and Petersen, 1999; Roodbergen and

de Koster, 2001a,b). However, this is not necessarily the optimal position. Roodbergen

and de Koster (2001b) propose that a middle aisle closer to the rear of the warehouse (far-

ther from the P&D point) might be better for pick tours, but conclude that the exact middle

is close to optimal when picks are uniformly distributed.

Consider a warehouse in which the middle aisle need not be halfway between the top and

bottom cross aisles. Let the portion of each picking aisle below the middle cross aisle be αL

in length, and the portion of each picking aisle above the middle cross aisle be (1 − α)L in

length, where 0 ≤ α ≤ 1 (the cross aisle is in the center of the warehouse when α = 0.5).

Cross aisle travel in not affected by the position of the middle cross aisle, therefore we

focus on picking aisle travel. Using the method outlined in the appendix, and maintaining

the assumption that the locations are uniformly distributed in the warehouse, the expected

picking aisle travel distance in the more general case is

1

n

[
L

3
+ 4α(1− α)v

]
+

n− 1

n

[(
α2 − α +

2

3

)
L + 2v

]
.

With the cross aisle travel expressed by (2), the expected travel-between distance in Layout
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B when α is a variable is

E[TBB(α)] =
1

n

[
L

3
+ 4α(1− α)v

]
+

n− 1

n

[(
α2 − α +

2

3

)
L + 2v

]
+

a(n2 − 1)

3n
.

This function is minimized when α = 0.5. We also consider picking aisle travel in a single-

command cycle, where the middle aisle is traversed (1 − α)% of the time. The expected

one-way travel distance is v + L/2 + (1− α)2v, which leads to a roundtrip of L + (6− 4α)v.

The expected single-command travel distance is then

E[SCB(α)] = L + (6− 4α)v +
an

2
,

which is minimized when α is at its maximum of 1.0. This result is consistent with the

earlier result that adding a middle cross aisle increases travel from the P&D point to the

pallet positions above the middle aisle. Because the expected dual-command travel distance

is the sum of the expected travel-between distance and the expected single-command travel

distance, we have the following proposition.

Proposition 1 In Layout B, the position of the middle aisle that minimizes dual-command

travel distance is between the center of the warehouse and the top cross aisle.

Proof. Expected single-command travel distance is minimized when the middle aisle is

as far above the center as possible. Expected travel-between distance is minimized when

the middle aisle is placed exactly in the center. Since the expected dual-command travel

distance is a convex combination of these two components, the result is an optimal position

that is somewhere between the exact center and the top cross aisle. 2

In an empirical illustration of this result, we assume square pallet footprints (which

include clearances), and specify the warehouse dimensions in pallets, where the center-to-

center distance between adjacent picking aisles, a, is 5 pallets, and the cross aisle width, 2v,

is 3 pallets. Using fixed picking aisle lengths L = 10, 20, 50 and 100 pallets, we determine

the optimal position of the middle aisle, α∗, for values of n up to n = 40. The results are

shown in Figure 4. We note that α∗ is greater for small values of L, and that for the more

common aisle lengths (L = 50 and 100), α∗ is relatively constant for a given L. The practical

application of this result is that when a storage area is expanded to include additional picking

aisles of the same length, the optimal position of the cross aisle does not change.

How much do we gain by placing the middle cross aisle in the optimal position? Figure 5

shows the percent improvement in expected dual-command travel distance when the cross

aisle is moved from the exact middle to the optimal position, as indicated in Figure 4. Except
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Figure 4: Optimal Cross Aisle Position versus n for L = 10, 20, 50 and 100

for very small warehouses, the improvement is less than 1%; therefore we can conclude that

a middle cross aisle placed halfway between the top and bottom cross aisles (α = 0.5) gives

close-to-optimal performance. For this reason, the remaining analysis in this paper with

Layout B assumes α = 0.5.
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3.3 Layout C: Picking Aisles Parallel to Front Wall with a Central

Cross Aisle

Layout C, represented in Figure 3(b), is similar to Layout B except that the picking aisles

are parallel to the front wall of the warehouse where the P&D point is located, and a central

cross aisle perpendicular to the front wall is inserted. The two layouts can actually be viewed

as the same general design with the P&D point moved to another position. As we will see,

however, this change in the position of the P&D point has a significant impact on the optimal

shape of the warehouse, therefore it is beneficial to view Layouts B and C as distinct designs.

As before, the warehouse has n picking aisles, each with picking length L, and cross aisles

of width 2v.

Given a P&D point at the bottom center of the warehouse, as shown in Figure 3(b), the

expected single-command travel distance for Layout C is

E[SCC] =
L

2
+ 2v + an. (9)

The expected travel between two locations in Layout C is the same as the expected travel-

between distance in Layout B, where E[TBC] is given by (7). The resulting dual-command

travel distance for this warehouse is then

E[DCC] = L

(
11n− 1

12n

)
+ v

(
2n− 1

n

)
+ a

(
4n2 − 1

3n

)
. (10)

The total savings gained by using dual-command travel in Layout C is similar to the

results seen for Layout B. The question of optimal inserted cross aisle position is not an

issue for Layout C due to the fact that the center position minimizes both E[SCC] and

E[TBC], which therefore minimizes E[DCC].

The next section uses the expressions for single-command and dual-command travel dis-

tance in Layouts A, B and C, to determine the warehouse shape that minimizes travel

distance.

4 Optimal Warehouse Shape

The models developed by Roodbergen and Vis (2006) for travel distance in a “one block”

warehouse (Layout A), allow them to determine the optimal number of aisles, n, for a fixed

total picking length and picklist size, by enumerating the possible solutions for n. By relaxing

the integrality of n, we can directly calculate the optimal number of aisles for single-command

and dual-command operations.
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4.1 Single-Command Travel

For single-command travel, if we let T be the total picking length of the warehouse, substi-

tuting L = T/n into our three equations for E[SC] and taking the derivative with respect

to n, yields n∗(SC), or the number of aisles that minimizes single-command travel distance.

We consider Layouts A, B and C, and for ease of comparison, assume Layouts A and B have

an even number of aisles. For Layouts A and B,

n∗(SCA) = n∗(SCB) =

√
2T

a
, (11)

and for Layout C,

n∗(SCC) =

√
T

2a
. (12)

Using the 2nd-order condition for convexity, we can show that for all three layouts, ∂2E[SC]
∂n2 >

0 for all n > 0, therefore E[SC] is convex with respect to n, and the optimal number of aisles

is achieved by rounding either up or down; i.e., min(dn∗(SC)e, bn∗(SC)c). Characterizing

the shapes described by (11) and (12) leads to the following proposition.

Proposition 2 The warehouse shape that minimizes single-command travel in Layouts A,

B and C is approximately half as tall as it is wide.

Proof. For Layouts A and B, if the cross aisle width, 2v, is small relative to the picking

aisle length, L, then for a warehouse that is half as tall as it is wide, an/2 ≈ L = T/n;

and by rearranging terms, n =
√

2T/a, which is the same as (11). Likewise, for Layout

C, the width of the warehouse is approximately L = T/n, and the height is an; therefore,

T/2n = an and n =
√

T/2a, or the result in (12). 2

The above result is shown by Francis (1967) for a continuously-represented warehouse,

and stated by Bassan et al. (1980) for Layouts A and C. For a given T and shapes optimized

for single-command travel, Layout C has half the number of aisles as Layouts A and B, but

they are twice as long. (Recall that we assumed an even number of aisles for Layouts A

and B.) Furthermore, when Layouts A and C are optimally-shaped, the expected single-

command travel distance is the same. In this scenario, the main difference between the

two layouts is access to the picking space from the bottom cross aisle: Layout C has a

dominant single P&D point, whereas the picking space can be accessed from anywhere along

the bottom aisle. Note that there is little to no difference between the area of the two layouts

when Layouts A and C are optimally-shaped.
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4.2 Dual-Command Travel

For dual-command travel, we again relax the integrality of n and take the derivative of

E[DC] with respect to n. For Layout A, this results in the cubic equation 5an3 + (5a −
10T + 12v) n + 4T = 0. Solving for the optimal n yields

n∗(DCA) =
−b

3


− c

2
+

√( c

2

)2

+

(
b

3

)3



1/3
+


− c

2
+

√( c

2

)2

+

(
b

3

)3



1/3

, (13)

where b = (5a−10T +12v)/5a and c = 4T/5a. For Layouts B and C, solving for the optimal

n in the same manner also yields (13), except that for Layout B, b = (10a− 17T + 12v)/10a

and c = T/5a, and for Layout C, b = (4a − 11T + 12v)/16a and c = T/8a. For reasonable

parameter values (where T is at least several times larger than v or a) we can show that

E[DC] is convex for all positive integer values of n, therefore an optimal number of aisles can

be found by rounding the result of (13) either up or down. Note that evaluating (13) can be

difficult to do by hand, because, although it produces real-valued results, the intermediate

steps may require manipulation of complex numbers. For this reason, it is simpler to find

the roots of the cubic equation using a mathematical software package, such as Mathematica

(2005).

Using these results, we examine how the shape of a warehouse that is optimized for dual-

command travel distance is different from the one that is optimized for single-command

travel distance (which we showed in Section 4.1 is a square half-warehouse for all three

layouts). Figures 6(a) and 6(b) show the optimal number of aisles versus total picking

length for Layouts A and B, and for Layout C, respectively. As before, we assume all

aisles are 3 pallets wide (2v = 3 and a = 5). For Layout A, we see that the curves for

n∗(SCA) and n∗(DCA) are almost the same (although (11) and (13) look very different),

therefore the optimal warehouse shape is approximately the same. For Layout B, however,

the warehouse optimized for dual-command travel distance has fewer aisles, i.e., it is narrower

and taller, than the warehouse optimized for single-command travel. For Layout C, the curve

for n∗(DCC) is above the curve for n∗(SCC), therefore the warehouse optimized for dual-

command travel has a greater number of aisles, or is narrower and taller, as we saw for Layout

B. For our values of v and a, the shape that minimizes dual-command travel distance in

both Layouts B and C follows, on average, height/width = 0.65.

What is the impact of designing a warehouse with a non-optimal number of aisles? In

Figure 7 the expected dual-command travel distance for Layouts A, B and C is plotted versus
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Figure 6: Optimal Number of Aisles for Single-Command and Dual-Command Travel: (a)
Layouts A and B, (b) Layout C
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warehouse shape factor (height/width) for three different warehouse sizes (T = 300, 1000

and 3000). The wrong warehouse shape can increase the dual-command travel distance by

more 30%, however, the curves are somewhat flat (E[DC] is within 5% of optimal) when the

shape factor is in the range of 0.4 to 1.
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Figure 7: Effect of Warehouse Shape on Dual-Command Travel for (a) T = 300 (b) T = 1000
and (c) T = 3000

5 Performance Results for Layouts A, B and C

In this section we compare the performance of Layouts A, B and C for dual-command

operations. We first provide some analytical results that illustrate the benefit of a middle

cross aisle for dual-command travel by comparing Layouts A and B, and then Layouts A

and C. Finally, we compare all three aisle designs, given that each has been optimized for

dual-command travel distance.
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5.1 A versus B: When is the Addition of a Middle Cross Aisle

Beneficial?

Layout B is essentially the same aisle design as Layout A, with a middle cross aisle inserted.

For this configuration, adding a middle cross aisle degrades the “out and back” portion of

a tour, but generally improves the travel between pallet locations. This is confirmed in

Vaughan and Petersen (1999) and Roodbergen and de Koster (2001a,b) using simulation,

where we see reduced expected travel distance for as few as two picks, depending on the

warehouse layout. Since there is clearly a tradeoff between how much penalty we are willing

to tolerate (width of the cross aisle), to save on picking aisle travel, we propose a rule, based

on the length of the picking aisles and the width of the cross aisles, for establishing when a

middle cross aisle is useful for dual-command travel.

Proposition 3 A dual-command warehouse should have a middle cross aisle half-way be-

tween the top and bottom cross aisles if

L

2v
>

4n + 2

n− 1
.

Proof. Since the cross aisle travel is the same for both types of warehouses, we focus

on the picking aisle travel. In other words, we compare the picking aisle travel distance in

Layout B, L(17n− 1)/(12n) + v(6n− 1)/n, with the picking aisle travel distance in Layout

A, L(5n − 1)/(3n) + v(4n − 2)/n, to see when the former is less than the latter. Algebraic

manipulation gives the result. 2

Because only picking aisle travel is considered, Proposition 3 is independent of the P&D

location and whether the number of picking aisles is odd or even. Proposition 2 leads to

two corollaries, which can both be shown by recognizing that for integer values of n > 1,

(4n + 2)/(n− 1) is a strictly decreasing function.

Corollary 1 The upper bound on (4n + 2)/(n− 1) is 10, which occurs at n = 2. Therefore

the addition of a middle cross aisle would improve dual-command travel in any warehouse

with L/2v ≥ 10.

Corollary 2 The lower bound on (4n + 2)/(n− 1) is 4, which occurs as n →∞. Therefore

the addition of a middle cross aisle would degrade dual-command travel in any warehouse

with L/2v ≤ 4.
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5.2 A versus C: Does Layout C Dominate Layout A?

Due to the inserted cross aisle, dual-command travel in Layout C is, in more likely to be

more efficient than in Layout A. In fact, we show with the following proposition that for

warehouses of similar shape, Layout C is more efficient than Layout A for dual-command

travel.

Proposition 4 Given a total picking length T , and warehouses that are approximately half

as tall as they are wide; i.e., the number of aisles is given by (11) and (12), expected dual-

command travel distance is less in Layout C than in Layout A.

Proof. When the number of aisles in Layouts A and C are given by (11) and (12),

respectively, then nA = 2nC. Substitution into (4) and (10), with algebraic manipulation

results in E[DCC] < E[DCA] for all positive values of T , v and a. 2

We illustrated empirically in Section 4.2 that the shape that minimizes dual-command

travel in Layout A is approximately half as tall as wide, but the shape that minimizes

dual-command travel in Layout C is narrower and taller. Therefore, the comparison in

Proposition 4 is a comparison of an optimal Layout A to a sub-optimal Layout C. We can

therefore conclude that when Layouts A and C have both been optimized in shape for dual-

command travel, expected dual-command travel distance is always less in Layout C. This

statement is illustrated by the numerical results in Section 5.3.

5.3 Numerical Results

In this section we compare the performance of Layouts A, B and C, each designed to minimize

dual-command travel distance. Figure 8 shows E[SC], E[TB ] and E[DC] over a range of

values of T , where the warehouses evaluated each have the number of aisles that minimizes

E[DC]. We plot the performance ratio of each design, which is defined for E[SCA] as

E[SCA]/ min(E[SCA], E[SCB], E[SCC]). Note in Figure 8(a) that Layout A is preferable for

single-command travel, and in Figure 8(b) that Layout B is most efficient for travel-between.

The resulting difference for dual-command travel is shown in Figure 8(c), where Layouts

B and C are approximately 5% more efficient than Layout A. Layout C is preferred for small

warehouses (T < 1500), while Layout B is preferred for larger warehouses (T > 1500). The

difference between Layout B and C is small, being within 1% of each other for values of

T > 500.
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Figure 8: Performance Ratio (PR) Comparisons for Layouts A, B and C: (a) Single-
Command Travel (b) Travel-Between and (c) Dual-Command Travel

6 Conclusions

Dual-command operations are common in the warehousing industry today, and, with the

increasing use of warehouse management systems, we expect the practice to increase in pop-

ularity. We should note that even in warehouses that use dual-commands, single-command

operations are still common, due to unavoidable and sometimes purposeful imbalances in

receiving and shipping workloads.

For manual storage areas such as we address in this paper, the academic literature has

focused almost exclusively on designing for single-command operations. Our work is intended

to lend some insight into designs for dual-command operations.

We considered three common layouts for unit-load warehouses in the context of dual-

command operations. The first (Layout A) is a very common design that has two cross aisles
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at the ends of the picking aisles. The other two designs (Layouts B and C) insert a middle

cross aisle to facilitate the travel between locations. We developed analytical expressions

for expected dual-command travel distance in all three layouts and used them to determine

when it is best to have a middle cross aisle or not, and when each layout might be preferred.

We showed that one of the two designs with an inserted cross aisle (Layout C) always

outperforms the design without the inserted cross aisle (Layout A) for dual-command opera-

tions. Furthermore, Layout B outperforms Layout A for all but very small warehouses. Most

interesting to us was that Layout C dominated Layout B for a wide-range of parameters and

when it did not, it was within 1 percent of Layout B. These results should be of interest to

the industry because—in our experience—Layout B is much more common in practice than

Layout C. This could be because Layout C is more dependent on the assumption of one,

central P&D location. Finally, we showed that the optimal placement of the “middle cross

aisle” of Layout B is not in the middle, but above it.

The research could be extended in several ways. First, warehouses with more than

one inserted cross aisle could be modeled, although to do so analytically may be difficult.

Second, our results are based on an assumption of one, central P&D location; models that

relax this assumption would be welcome. Third, our results are based on the assumption of

random storage, but since turnover-based storage policies are another method of improving

warehouse performance, models for such storage policies would be useful. And finally, we

assume storage and retrieval requests are processed in a first-come, first-served manner, but

even with dual-command operations, there exists the potential to decrease the cycle time by

opportunistically pairing requests.

Appendix

Expected Travel-Between Distance for Layout A. To determine the expected travel

distance between two random locations, we divide the travel-between distance into two

components: (1) cross aisle travel, and (2) picking aisle travel — including the distance

v to enter/exit the picking aisles, if necessary. We assume the locations are uniformly

distributed among the aisles. Since the aisles are equivalent in length, all aisles are equally

likely to contain one of the two locations. If the number of aisles is n, there are n2 possible

combinations of i and j, all equally likely. For instance, there are n possible ways that i = j,

for which there is no cross aisle travel required. Therefore, the probability that |i− j| = 0 is

n/n2. Likewise, there are 2(n − 1) ways that |i − j| = 1, so Pr(|i − j| = 1) = 2(n − 1)/n2.
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The expected number of aisle widths between i and j is

E[|i− j|] =
n−1∑

k=0

k Pr(|i− j| = k) =
n−1∑

k=1

k
2(n− k)

n2
=

(n2 − 1)

3n
.

The expected cross aisle travel distance is then

a(n2 − 1)

3n
. (2)

For picking aisle travel, we consider the case where the locations are in the same picking

aisle, and the case where the locations are in different picking aisles. Since we assume a

continuous uniform distribution within each aisle, we let Xi and Yj be uniform random

variables that represent the position of the locations in aisles i and j, respectively, where

Xi ∼ U(0, L) and Yj ∼ U(0, L). From probability theory, we know the expected distance

between two locations on the same aisle of length L is E[|x−y|] = L/3. For locations that are

on different picking aisles, the picking aisle travel distance is min[x+y, 2L−(x+y)]+2v. We

let Zij = Xi + Yj. The convolution of two identical uniform density functions is triangular.

Using the probability density function of Zij, fZ(z), we find that the expected value of

min[x + y, 2L− (x + y)] is then

E[min(z, 2L−z)] =

∫ 2L

0

min(z, 2L−z)fZ(z)dz =

∫ L

0

zfZ(z)dz+

∫ 2L

L

(2L−z)fZ(z)dz =
2

3
L.

The probability the second location will be in the same aisle as the first location is 1/n, and

the probability the second location will be in a different aisle is (n − 1)/n. The expected

picking aisle travel distance is then

1

n

(
L

3

)
+

n− 1

n

(
2

3
L + 2v

)
. (3)

Expected Travel-Between Distance for Layout B. For Layout B, the expected cross

aisle travel is identical to the cross aisle travel in Layout A, as described by (2). For picking

aisle travel, Xi and Yj are still random variables, such that Xi ∼ U(0, L) and Yj ∼ U(0, L),

however, travel across the middle cross aisle must be considered. In Figure 3(a), the left

pallet location is a distance of x above the bottom of picking aisle i, but the right location

is a distance of y + 2v above the bottom of picking aisle j. When the two locations are in

the same picking aisle, we expect to traverse the middle cross aisle half the time, therefore,

the expected travel is L/3 + 2v(1/2) = L/3 + v. To evaluate picking aisle travel distance
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when the locations are in different aisles, we condition on whether the locations are above

or below the middle cross aisle and consider four mutually exclusive cases:

(1) x ≤ L

2
, y ≤ L

2
(2) x >

L

2
, y >

L

2
(3) x ≤ L

2
, y >

L

2
(4) x >

L

2
, y ≤ L

2
.

In case 1, both locations are below the middle cross aisle, therefore the shortest path uses

either the bottom cross aisle or the middle cross aisle. The picking aisle travel is this case is

min[x+y, L−(x+y)]+2v. Applying the results from Layout A (with an aisle length of L/2)

yields expected picking aisle travel distance of L/3 + 2v for case 1. In case 2, both locations

are above the middle cross aisle, and by similarity with case 1, the expected picking aisle

travel distance is also L/3 + 2v.

In cases 3 and 4, we have one location above the middle cross aisle and one location below.

In these cases it is always optimal to use the middle cross aisle, therefore the expected picking

aisle travel distance is |x− y|+ 2v. For case 3,

E

[
Y −X|X ≤ L

2
, Y >

L

2

]
= E

[
Y |Y >

L

2

]
− E

[
X|X ≤ L

2

]
=

3L

4
− L

4
=

L

2
,

therefore the expected picking aisle travel distance is L/2+2v. By similarity, this applies for

case 4 as well. Since cases 1–4 are equally likely, the expected picking aisle travel distance

when the locations are on different aisles is

[
L

3

(
1

4

)
+

L

3

(
1

4

)
+

L

2

(
1

4

)
+

L

2

(
1

4

)]
+ 2v =

5

12
L + 2v.

The expected picking aisle travel distance is then

1

n

(
L

3
+ v

)
+

n− 1

n

(
5

12
L + 2v

)
. (6)
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