Optimizing Fishbone Aisles for Dual-Command
Operations in a Warehouse

Letitia M. Pohl and Russell D. Meller
Department of Industrial Engineering
University of Arkansas
Fuayetteville, Arkansas 72701
lpohl@uark.edu
rmeller@uark.edu

Kevin R. Gue
Department of Industrial € Systems Engineering
Auburn University
Auburn, Alabama 36849
kevin.gue@auburn.edu

November 19, 2008

Abstract

Unit-load warehouses store and retrieve unit-loads, typically pallets. When stor-
age and retrieval operations are not coordinated, travel is from a pickup and deposit
(P&D) point to a pallet location and back again. In some facilities, workers interleave
storage and retrieval operations to form a dual-command cycle. Two new aisle designs
proposed by Gue and Meller (2006) use diagonal aisles to reduce the travel distance
to a single pallet location by approximately 10 and 20 percent for the two designs,
respectively. We develop analytical expressions for travel between pallet locations for
one of these — the fishbone design. We then compare fishbone warehouses that have
been optimized for dual-command to traditional warehouses that have been optimized
in the same manner, and show that an optimal fishbone design reduces dual-command
travel by 10-15 percent.

1 Introduction

A unit-load warehouse receives and ships material in single discrete units, usually pallet loads.

Unit-load warehouses are commonly found in industry, and include third-party transshipment



warehouses, beverage distributors and import distribution centers. Many warehouses that
ship in smaller units, such as cartons or pieces, have a portion of their activity dedicated
to unit-loads. For example, the reserve area of a distribution center may be used to receive
and store pallets until they are needed to replenish a fast-pick area, when they are then
“shipped” to another part of the warehouse (Bartholdi and Hackman, 2007). As discussed
in Pohl, Meller and Gue (2008), import warehouses play a critical role in today’s global
economy, which suggests a renewed investigation into unit-load warehouse design.

Storage and retrieval operations are labor-intensive, with the majority of workers’ time
spent in travel. Because modern warehouses are larger than ever before, travel is an even
more significant factor. According to Hudgins (2006): “A decade ago, 300,000 square feet
was the definition of a large warehouse — today it’s upwards of 1 million square feet.” If
we are able to reduce the required travel distances, we can see improvements in two ways:
either by reducing labor costs, or, what may be more important in a competitive market, by
achieving a faster response time to provide better customer service.

One method of reducing travel in a unit-load warehouse is to coordinate, or interleave,
storage and retrieval operations. Travel from a common pickup and deposit (P&D) point
to a single pallet location and back again is referred to as a single-command cycle. In a
dual-command cycle, the worker performs a storage operation and then moves directly to a
retrieval location before returning to the P&D point. In a single-command cycle, the forklift
is empty for half of the total travel distance, while in a dual-command cycle the empty
travel is only about one third of the total travel distance. We refer to this travel between
the storage and retrieval locations as “travel-between.” Because dual-command operations
make more efficient use of time and resources, and contemporary unit-load warehouses use
warehouse management systems to schedule activities, the use of dual-command operations
is likely to increase.

Figure 1 shows three traditional warehouse designs, with parallel picking aisles and or-

thogonal cross aisles at each end of the picking aisles. The layouts in Figures 1(b) and 1(c)



each have an additional cross aisle that divides the picking space into two sections. There is
a penalty to pay for inserting a middle cross aisle: it reduces floor space that could other-
wise be allocated to storage, and therefore requires a slightly larger facility to maintain the
same amount of storage. However, when more than one location is visited in a single tour,
the addition of a cross aisle creates more possible routes for travel between locations and
therefore has the potential to reduce expected travel (Roodbergen and de Koster, 2001). For
single-command travel, Layouts A and C are preferred, while Layouts B and C are generally
preferred for dual-command travel (Pohl, Meller and Gue, 2008). In fact, Pohl, Meller and
Gue show that when the number of aisles in Layouts B and C is chosen to minimize expected
dual-command travel, their performance is very similar and both layouts require the same

amount of aisle space.
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Figure 1: Traditional warehouses.

Gue and Meller (2006) point out that traditional designs, such as those in Figure 1, ap-
pear to be subject to the unspoken constraints that picking aisles must be parallel to one
another, and cross aisles must be perpendicular to the picking aisles. When they relax these
constraints, they show that non-traditional aisle layouts can reduce the expected travel dis-
tance to a single pallet location. This observation was also used by White (1972) to motivate
the design of “radial aisles” in continuously-represented, non-rectangular warehouses. Gue

and Meller (2006) proposed two new designs for a unit-load warehouse, where only single-



command cycles are considered. These two new designs, which are presented in Figures 2(a)

and 2(b), reduce single-command travel distance by about 10% and 20%, respectively, when
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Figure 2: (a) Flying-V warehouse optimized for single-command operations; (b) Fishbone
warehouse optimized for single-command operations.

The purpose of this paper is to investigate the fishbone aisle design for dual-command
operations. We show how to design a dual-command warehouse with fishbone aisles; and
by providing a detailed comparison with traditional aisle designs, we show that the fishbone
design provides lower expected travel distances. Our focus is on the use of analytical models
of travel distance to optimize warehouse design. The expressions developed here can be used
to develop a new fishbone warehouse design, or to modify the aisle layout in an existing
facility.

The next section reviews previous research. In Section 3, we develop expressions for
travel-between distance in the fishbone aisle design. The travel-between expression is then
combined with the single-command distance expression from Gue and Meller (2008) to form
a dual-command travel distance expression for any fishbone warehouse. In Section 4, using
the new models for dual-command travel, we design optimal fishbone warehouses over a range
of sizes, and in Section 5, we compare their performance to equivalent traditional warehouses
that are also optimized for dual-command operations. We summarize our results and suggest

future work in Section 6.



2 Previous Research

Warehouse design is complex because there are many interrelated design prob-
lems that lead to a multitude of potential designs. For this reason, most research
focuses on one aspect of the design. Two recent surveys of the literature on
warehouse operation and design include Gu et al. (2007) and de Koster et al.
(2007). Most of the papers reviewed by these surveys fall into one of two cate-
gories: they either consider methods for allocating items to storage locations, or
seek to minimize the operational cost of retrieving items from storage through
zoning, batching, and/or orderpicker routing. The most common measure of op-
erational cost is expected travel time or travel distance. Several papers develop
travel models for the purpose of determining the aisle layout (number and length
of aisles, and addition of cross aisles) that minimizes expected travel. Since this
paper also develops travel distance models to compare warehouse aisle designs,
we focus on the research that models expected travel.

Most of the recent research is concerned with orderpicking. In work that addresses unit-
load warehouses, researchers have modeled single-command travel in Layout A (Francis,
1967; Bassan et al., 1980) and Layout C (Bassan et al., 1980), and have presented some
well-known results on optimal warehouse shape and P&D location. There are several papers
that model dual-command travel in Layout A such as Mayer (1961) and Malmborg and
Krishnakumar (1987, 1990), but they do not use their results to optimize warehouse design
parameters, such as number and length of aisles. Pohl, Meller and Gue (2008) develop
analytical expressions for single-command and dual-command travel in Layouts A, B and
C. They derive equations to determine the number of aisles that minimizes dual-command
travel in each layout. We use these travel models to describe the traditional warehouse
performance that is compared to the performance of fishbone warehouses.

Algorithms to generate optimal orderpicking tours for a given set of pick

locations are available (see Ratliff and Rosenthal (1983) and Roodbergen and



de Koster (2001)), however simulation is required to find the average tour length.
Authors who develop analytical travel models for orderpicking base them on
routing heuristics, rather than optimal tour generation. Because our research
is limited to single-command and dual-command travel, our analytical models
describe optimal travel paths.

Roodbergen and Vis (2006) and Roodbergen et al. (2008) concentrate, as
we do, on finding the best aisle layout given a constant storage capacity. They
develop analytical equations for expected travel to a general number of pick
locations, assuming routing heuristics. Roodbergen and Vis (2006) consider
only a one-block warehouse (Layout A), while Roodbergen et al. (2008) allow a
general number of cross aisles and an alternative depot location. Both papers
validate their models with simulation.

All of the literature cited above focuses on one or more of the traditional
aisle layouts of Figure 1. The nontraditional aisle designs in Gue and Meller (2008) were
developed to improve single-command travel in a unit-load warehouse. The first design has a
flying-V cross aisle (see Figure 2(a)). The position and orientation of the middle cross aisle is
determined by minimizing the expected travel distance from the P&D point, located at the
lower center, to a single pallet location. Improvement in single-command travel distance is
shown to be approximately 10% for typical warehouse sizes when compared to a traditional
warehouse without a middle cross aisle.

The fishbone design, shown in Figure 2(b), has a middle cross aisle that is diagonal
and straight, with vertical picking aisles above and horizontal picking aisles below. The
slope of the middle cross aisle is determined by minimizing the expected distance from the
P&D point, located at the bottom center, to a single pallet location. As mentioned in the
previous section, the fishbone design reduces single-command travel by approximately 20%
when compared to an equivalent warehouse without a middle cross aisle (Gue and Meller,

2008).



In this paper, we investigate only the fishbone design for dual-command operations,
rather than both the fishbone and flying-V designs, because a detailed simulation study
(Pohl, Meller and Gue, 2007) showed fishbone to be the most promising of the two new
designs for dual-command operations. As in Gue and Meller (2008), we assume a
single P&D point, optimally located in the center of one side of the warehouse
(Francis, 1967; Roodbergen and Vis, 2006), and we assume a random storage
policy. We therefore model the warehouse as a set of discrete picking aisles,
with continuous picking activity uniformly distributed within in each aisle, and
among all aisles. To design fishbone warehouses for dual-command operations, we require
an analytical expression for dual-command travel distance. Expressions for single-command
travel distance are found in Gue and Meller (2008); therefore, the requirement is for an

expression for travel-between distance, which we develop in Section 3.

3 Expected Travel Distance Between Two Locations in a Fishbone
Warehouse

We are interested in expected horizontal travel distance. Therefore we do not model the
acceleration and deceleration of the vehicle, time to load and unload, or vertical travel to
upper pallet positions. Workers can travel in either direction in an aisle and can change
directions within an aisle. We assume that the picking aisles are sized such that the racks
on each side of the picking aisle can be accessed, but that the lateral travel within the
aisle is negligible. That is, we assume the travel distance to a given pallet position is the
same as the travel distance to a pallet position directly above or directly across the picking
aisle. A “location” in the warehouse therefore refers to two columns of pallet positions, one
on each side of the picking aisle. For example, the warehouse shown in Gue and Meller
(2008) with 21 picking aisles that are 50 pallets long, would have a total picking aisle length
T = 1050. This implies that there are 2100 pallet positions on each level of the storage

racks. The storage and retrieval requests are assumed to be independent, and processed on



a first-come-first-serve basis.

In a fishbone warehouse, there are several potential paths between any two locations,
and the optimal path is very much dependent on which two locations in the warehouse are
considered. The cross aisles in the fishbone design divide the warehouse into three regions,
which are indicated in Figure 3. We approach the problem incrementally by considering the

cases for which
1. travel is within one region (Section 3.1),
2. travel is between Regions 1 and 2 (Section 3.2), and
3. travel is between Regions 1 and 3 (Section 3.3).

Due to the symmetry of the warehouse, the expected travel between Regions 2 and 3 is
the same as between Regions 1 and 2. The total expected travel-between distance, F[TB],

is the weighted sum of the conditional expectations derived in Sections 3.1, 3.2 and 3.3:

E[TB] = E[TB"|wi; + E[TB**|wy + E[TB**ws;

+2E[TB"wiy + 2E[TB"** w3 + 2E[ TB*|wss,

where E[TB"] is the expected travel between a location in Region r and a location in Region
s, and the weights, w,,, are proportional to the product of the total picking aisle lengths in

Regions r and s.
3.1 Travel Within a Region

Because the fishbone design is symmetric, Regions 1 and 3 are the same size and shape;
therefore, the expected distance between two locations in Region 1 is equal to the expected
distance between two locations in Region 3. Region 2 is shaped differently; however it
resembles the other two regions, in that it is bordered by a cross aisle on one side that is
perpendicular to the picking aisles (the top cross aisle), and a cross aisle on the other side

that is diagonal to the picking aisles. Due to this similarity, we can develop a single set of
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Figure 3: Fishbone regions, with travel paths between two locations in Region 2.

equations to describe travel within any region in the fishbone warehouse. For most of this
section we assume the two pallet locations to be visited are in Region 2. With only a slight
modification, the results for Region 2 can be extended to describe travel within Regions 1
and 3.

If two locations are in the same picking aisle, no cross aisle should be used for travel-
between. If the locations are in different aisles within the region, the travel-between can use
either the perpendicular cross aisle or the diagonal cross aisle, as indicated for Region 2 by
the dashed lines in Figure 3. The choice between these two alternative paths depends upon
the exact locations. The shaded regions in Figure 3 indicate where no picking takes place
due to the width of the cross aisles. We assume the perpendicular cross aisle consumes v
of each picking aisle, and the diagonal cross aisle consumes w of each picking aisle, where
w R V2.

We define the position of any location by its distance from the start of the aisle, which

is the end where the picking aisle intersects the perpendicular cross aisle. Let = denote the



distance from the start of aisle ¢ to one location, and y denote the distance from the start
of aisle j to the other location. Aisle i has picking length L; and aisle j has picking length
L;. The picking aisles in each region are numbered sequentially, such that the distance
along the perpendicular cross aisle between aisles ¢ and j is a|i — j|, where a is the distance
between adjacent picking aisles. If the perpendicular cross aisle is used, the distance between
locations is = + v + ali — j| + v + y (refer to Figure 3). For the horizontal picking aisles of
Regions 1 and 3, the diagonal distance between aisles is d;, = a\/m, where m is the
slope of the diagonal cross aisle. The diagonal distance between the vertical picking aisles of
Region 2 is d, = av/1 + m2. If travel is along the diagonal cross aisle, the distance between
locations in Region 2 is then (L; — z) + w + d,|i — j| + w + (L; — y).

For most picking aisle pairs ¢ and j, the choice of cross aisle depends on the values of x
and y (we analyze this in Section 3.1.1). For other instances of i and j, the shortest path
always uses the perpendicular cross aisle, and these cases are discussed in Section 3.1.2.
Section 3.1.3 presents the total expected distance for travel between two locations in the

same region.
3.1.1 Two Alternative Paths

For most instances of ¢ and j, the choice of cross aisle depends on the values of x and y, or
more specifically, the value of x+y. The shortest distance between locations is the minimum
of the two alternative paths, x +y + ali — j| +2v and L; + L; — (z + y) + d,|i — j| + 2w.
If x + y is small, then the perpendicular cross aisle is the best choice. If x + y is large, the
diagonal cross aisle is best. We are indifferent about which path to choose when the two

paths are equal in length; i.e., when
r+y+tali—jl+2v=Li+ L; — (x+y) +dy|i — j| + 2w,

we see that

1
$+y=§[Lz‘+Lj+(dv—@)|Z'—j|]+w—v-
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Let g;; be a parameter associated with aisles 7 and j, that represents the point of indifference
in the cross aisle choice. That is,

1 .

We can now compare the value of the variable x 4 y to the parameter ¢;;. If z +y = ¢;; the
two alternative paths are the same length (by definition). If z +y < ¢;;, the shortest path
between locations uses the perpendicular cross aisle. If x +y > ¢;;, then the shortest path
uses the diagonal cross aisle.

Let X; and Y; be uniform random variables that represent the position of the locations
in aisles ¢ and j, respectively, where X; ~ U(0,L;) and Y; ~ U(0,L;). We can find the
probability density of Z;; = X; +Y;, which we denote as f7, using convolution. The prob-
ability that the shortest path between two random locations in aisles ¢ and j is along the

perpendicular cross aisle is then

qij
Pr(Zy; < ;) / f2(2) dz.
0

and the probability the shortest path between two random locations is along the diagonal

cross aisle is

Pr(Zi; > qij) =1— Pr(Z;; < qij).
The expected value of the travel-between distance, given that the locations are both in

Region 2, but in different picking aisles ¢ and j, is

(E[Zij|Zij < qij] + ali — j| + 2v) Pr(Zi; < qi5)

+ (L + Lj — E|Zij| Zij > qij) + dyli — 7| + 2w) Pr(Z;; > ¢;5),

where

Qij
EZij|Zij < qij] = / 2f712<q4;(2) dz (2)
0

11



and

L1+L7
ElZi;|Zi; > qi] = / 2f 21 75q,(2) dz. (3)

qij
Equations for fz, fz)z<q,; and fzz-,,, are derived in Appendix A. Since f7 is a piecewise-

continuous function, we compute Pr(Z;; < ¢;;) for the three intervals of g;;:

(2
Y for 0 < i < Lz

oL,L, HYS G s S

¢ij — Li/2
Pr(Zi; < aij) = Fz(q;) = JL—/ for L; < qi; < Lj,

J
OL;L; — (¢;; — Li — L;)?
| J QIJ/ZLJ J for Lj qu] <L1+LJ

Using (2) and (3), and the densities derived in Appendix A, we obtain:

(2
gqij for 0 < qij < LZ',
qa;; — L3 /3
E[Zij|Zij < qi5] = 25 — L, for Li < gij < Ly,
Li+ Lj)q% — (L3 + L3 +2¢3)/3
( J)qzj ( 7 i ng)/ fOI' Lz qu] < ij

k 2LiLj — (qi; — Li — L;)?
and

for 0 < qi; < Li,

L2/3+ LiLj+ L? — ¢,
2(Li/2+ Lj — qi5)

EZi;| Zi; > qi5) = for L, < q;; < Lj,

\ (¢ — Li — Ly)*

for L; < qi; < Lj.

12



3.1.2 Using the Perpendicular Cross Aisle: A Special Case

As discussed in the previous section, we generally must know the values of z and y to
determine which cross aisle provides the shortest path between two locations. We now
address a special case, where the perpendicular cross aisle is always the best choice, and
is therefore independent of x and y. Consider, for example, the two shortest picking aisles
in Region 2 of Figure 3 (one aisle is on the far left and the other is on the far right). For
all values of x and y in those two aisles, the distance along the perpendicular cross aisle is

shorter than the distance along the diagonal cross aisle. That is,

r+v+tali—jl+o+y < (Li—z)+w+dy|i—jl+w+(Lj—y) Vazel0, L], yel0,L;]. (4

If the inequality in (4) applies for x = L; and y = L, (the points furthest from the perpen-

dicular cross aisle), then it applies for all x and y. That is,

Li+L; <(d,—a)li—j|+ 2w — 2v, (5)

which is independent of z and y. If (5) holds, the perpendicular cross aisle will always
provide the shortest path, and the expected value of the distance between the two locations
is (L; + L;)/2 + ali — j| + 2v. We use this result, along with the results from Section 3.1.1,

in the next section to determine the total travel-between distance within a region.

3.1.3 Total Expected Travel Distance Between Locations Within a Region

If both locations are in Region 2, the expected distance between a location in aisle 7 and a

location in aisle j, where ¢ and j are different, is

13



(L, + L; L
5 L tali —j|+2v if Li + L; < (dy, — a)|i — j| + 2(w — v),

(E[Zij| Zij < qij)

E[TB|i # j] =

+(Li + Lj — E|Zi| Zi; > qi5]

\ +dy|i — j| + 2w ) Pr(Z;; > ¢;;) otherwise.
(6)
As discussed earlier, the results for Region 2 can be extended to Regions 1 and 3. The
number of aisles and the associated aisle lengths are different; however, the equations pre-
sented in Section 3.1.1 for ¢;;, E[Z|Z < qi;], E[Z|Z > g¢;;] and Pr(Z < g;;) are also valid for
Regions 1 and 3. The expected distance between two locations within either Region 1 or 3
can be obtained from (6) simply by replacing the term d, with dp,.
From probability theory, we know the expected distance between two uniformly dis-
tributed locations on the same aisle of length L; is L;/3. We define i, j = 1, ..., N, for Region
r, where r = 1, 2 or 3. Given that a location is in Region r, the probability of it occurring

on aisle 7 is

(7)

and

20 =1

1 jFi

The expected travel distance between two locations in Region r is then

E[TB"] = Z ( ) P+ > > E[TBi # jlpip;. (8)

i JF#

14



3.2 Travel Between Regions 1 and 2

There are two cases to consider when the travel is between a location in Region 1 and a
location in Region 2. These two cases depend upon the relative positions of the picking
aisles. Let the location in Region 1 be in aisle ¢, where i = 1, ..., N1, and let the location in
Region 2 be in aisle j, where j = 1,..., N5. In case A, as shown in Figure 4, aisles ¢ and j
meet two conditions: they are both on the left side of the warehouse, and the intersection of
aisle ¢ with the diagonal cross aisle is closer to the P&D point than the intersection of aisle
7 with the cross aisle. When these two conditions exist, travel uses either the left vertical

cross aisle (with aisle j' or j”), or the diagonal cross aisle (see Figure 4).
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Figure 4: Travel between a location in Region 1 and location in Region 2, case A (§; and 0,
are defined and used in Appendix B).

Case B applies to all aisle combinations that do not meet the conditions of case A. This
includes aisles ¢ and j on the left side of the warehouse, but the intersection of aisle j with

the cross aisle is closer to the P&D point (or the same distance). Case B also includes the
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instances for which aisles ¢ and j are on opposite sides of the warehouse. For case B, travel
uses either the top horizontal cross aisle (with aisle ¢" or aisle i) or the diagonal cross aisle

(see Figure 5).

.............................................

.4
i

aisle i’

aisle i
aisle j

L

Figure 5: Travel between a location in Region 1 and a location in Region 2, case B (d; and
d; are defined and used in Appendix B).

Let A indicate the set of aisle pairs that meet the conditions of case A, and B indicate
the set of aisle pairs that meet the conditions of case B. Since the sets A and B partition the
set of all aisle pairs between Regions 1 and 2, the total expected distance between a location

in Region 1 and a location in Region 2 is

(1B = Y E[TB s+ D EITB " Ipen, (9)
(i,j)EA (k,l)eB

where p; is defined by (7). See (17) and (22) in Appendix B for the expected travel-between
for case A, I/ [TBZ?(A)], and the expected travel-between for case B, F [TB;?(B)], respectively.

Because our warehouse is symmetric, (9) also represents the expected distance between a

16



location in Region 2 and a location in Region 3, i.e.,
E[TB*] = E[TB"]. (10)

3.3 Travel Between Regions 1 and 3

For travel between Regions 1 and 3, let one location be in aisle ¢ of Region 1 and the other
location be in aisle j of Region 3, where i, j = 1,..., Ny and N; = N3. As shown in Figure 6,
travel between locations uses either the diagonal cross aisle or the top horizontal cross aisle.
If travel is along the top horizontal cross aisle, there are potentially two alternative paths
from aisle i to the top cross aisle (aisle i’ or i), and two alternative paths from aisle j to the

top cross aisle (aisle j" or j”). The expected travel between locations in Regions 1 and 3 is
E[TB¥] =Y "> E[TBpip;, (11)
(]

where p; is defined by (7). See (23) in Appendix C for the derivation of E[TB;?].
3.4 Total Expected Travel Distance Between Two Locations

The probability of two locations of a dual-command cycle being in Regions r and s (r,s =
1,2, or 3) is

T, T
T2’

Wyrg =

where 7). is the total length of picking aisles in Region r, T is the total length in Region
s, and T is the total length in the warehouse. Using these probabilities and (8)—(11), the

expected travel between locations in a warehouse is

BITB] = E[TB"Jwy + E[TB?|uws, + E[TB* s

+ 2E[TBwyy + 2E[TB|w3 + 2E[TB*|wss.

17
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Figure 6: Travel between a location in Region 1 and location in Region 3 (6; and §; are
defined in Appendix C).

4 Optimizing Fishbone Aisles for Dual-Command Operations

To design fishbone warehouses for dual-command operations, we require an an-
alytical expression for dual-command travel distance. Expected dual-command
travel distance is the sum of expected single-command travel distance and ex-
pected travel-between distance, i.e., E[DC| = E[SC] + E[T'B]. We use the ex-
pressions for expected travel-between distance developed in Section 3, and the
one-way travel distance expression developed in Gue and Meller (2008). Gue
and Meller (2008) used their one-way travel expression and nonlinear optimiza-
tion methods to find the optimal slope of the diagonal cross aisle; while we use
a discrete grid-based search over a range of cross aisle slopes and warehouse
shapes to determine the best fishbone design for a given warehouse size. To

facilitate our analysis approach and maintain consistent notation with Section

18



3, we rewrite the original equations for one-way travel distance, add a distance
term of a/2 to model the distance traveled into and out of the picking space,
and multiply the result by two to yield a single-command cycle distance. The
expected single-command travel distance is

E[SC] =2

Y

a L; Lj
54‘2}% (5idv+w+§> —|—ij ((deh—i-w—'—?)

=% jeH

where V' is the set of all vertical aisles (Region 2) and H is the set of all horizontal
aisles (Regions 1 and 3). ¢; and 0, represent the integer number of aisle widths
between the P&D point and aisles ¢ and j, respectively.

Using these analytical expressions, we can now calculate E[DC] for any fish-
bone warehouse. We consider a range of warehouse sizes, where the size (or
storage capacity) of a warehouse is measured by the total length of the picking
aisles, 7. The best fishbone aisle design for a given 7" minimizes E[DC| and has
a particular shape and aisle structure. To find this best design, we vary two
parameters: warehouse width, as defined by the number of vertical aisles in Re-
gion 2, and the slope of the diagonal cross aisle. Because we maintain a constant
T, varying the warehouse width results in a variety of warehouse shapes. The

grid-search is conducted as follows:

1. For each value of T, enumerate the meaningful warehouse widths over a

discrete number of vertical aisles.

2. For each resulting width, consider 100 slope values between the minimum
slope of zero and the maximum slope that occurs when the diagonal cross

aisle meets the upper corners of the warehouse.
3. Calculate E[DC| = E[SC] + E[TB] for each point in the grid.

4. Select the warehouse width and diagonal aisle slope that results in the

19



minimum value of E[DC].

We assume square pallet footprints (which include clearances), and specify the warehouse
dimensions in pallets, where the center-to-center distance between adjacent picking aisles, a,
is 5 pallets, and the cross aisle width, 2v, is 3 pallets. As mentioned in Section 3, a warehouse
with a total picking aisle length 7' = 1000 pallets implies a warehouse with 1000 “locations,”
but 2000 columns of pallet positions.

Some of the results from the optimization with 7' = 300 are shown in Table 1
in Appendix D. Although 100 slopes were considered for each warehouse width,
for brevity, Table 1 shows only 13 of the 100 slopes considered (including the
maximum and minimum slopes for each width). Note that for 7" = 300, the
minimum F[DC] occurs when the warehouse width corresponds to 13 vertical
aisles and the slope is at its maximum of 0.98 (shaded region in table).

Through this analysis, we gained several insights, or rules-of-thumb, for de-
signing dual-command warehouses with fishbone aisles. For example, the best
cross aisle slope is dependent on the shape of the warehouse. Figure 7 shows the
results for two general warehouse shapes and three different sizes (" = 300, 7' = 1000
and 7" = 3000). For warehouses that are approximately twice as wide as they are tall (Fig-
ure 7(a)) the best slope (indicated with an asterisk *) is at, or close to, its maximum possible
value. However, for tall, narrow warehouses (Figure 7(b)) with relatively few, long vertical
aisles, the best slope is typically much lower than its maximum possible value. Notice that
the curves for E[DC| and 2E[SC| are similar in shape, indicating that the best slope for
single-command travel distance is also nearly the best for dual-command travel distance.

Figure 8 shows E[DC| and E[SC| plotted versus warehouse width for three
values of 7. For each of the warehouse widths evaluated, the best cross aisle
slope was chosen. We note that for the three warehouse sizes shown (7" = 300,
1000 and 3000), E[DC] and E[SC] are both near their minimum when the number

of vertical aisles is equal to 13, 21 and 35, respectively (indicated by the vertical
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Figure 7: E[DC] and 2E[SC] versus slope for T' = 300, 7' = 1000, 7" = 3000; (a) Fishbone
warehouses that are approximately twice as wide as they are tall; (b) Fishbone warehouses
that are approximately twice as tall as they are wide.

dashed lines). These widths correspond to warehouses that are approximately
twice as wide as they are tall, resulting in half-warehouses that are approximately
square. This result is consistent with research on optimal shapes for single-
command travel in traditional warehouses (Francis, 1967; Bassan et al., 1980;
Pohl et al., 2008).

From the results of this empirical study, we suggest two design rules for fish-
bone warehouses that perform dual-command operations. The best, or nearly-
best, design is obtained by (1) choosing a warehouse shape that is approximately
a square half-warehouse (Figure 8), and (2) extending the diagonal cross aisle

to the upper corners of the picking space (Figure 7(a)). Another important re-
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Figure 8: Optimal Warehouse Shape for E[DC] and E[SC] for (a) T" = 300, (b) 7' = 1000
and (c) T = 3000
sult from this study is that a fishbone warehouse that has been optimized for
single-command operations is also near-optimal for dual-command operations.

The robustness of the design to these two operating modes is beneficial, since

many warehouses perform a combination of single- and dual-command cycles.

5 Comparison of Fishbone to Traditional Warehouses

In this section we compare fishbone warehouses to the traditional warehouses that we des-
ignated in Figure 1 as Layouts A and B. For simplicity, we do not include Layout C in the

comparison since its dual-command performance is very similar to that of Layout B (Pohl,
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Meller and Gue, 2008). Note that for the same total picking aisle length 7', the warehouses
will have slightly different areas. For the same width, a fishbone warehouse and Layout B
are larger than Layout A, because of the area required by the middle aisle.

Figure 9 compares travel distance in warehouses with 7" = 1000 for the fishbone design
and the two traditional aisle designs. The diagonal aisle slope for each fishbone warehouse
was selected to minimize expected dual-command travel distance. Figure 9(a) is similar
to the results of Gue and Meller (2008), in that the fishbone design improves over both
traditional designs for single-command travel (except for relatively tall, narrow warehouses,
where the performance is similar). Note that the optimal E[SC] for all three warehouses
occurs when the warehouse is approximately twice as wide as it is tall (21 aisles).

Figure 9(b) illustrates that a fishbone warehouse has lower expected travel distance be-
tween two locations than the traditional warehouse without a middle cross aisle for all
warehouse widths considered. However, a fishbone warehouse has a higher expected travel
distance between locations when compared to a warehouse with a standard middle cross aisle,
particularly for warehouses that are taller than they are wide. This is a significant result since
it indicates that the average improvement for dual-command travel for fishbone warehouses
will likely be less than the improvement previously illustrated for single-command travel.
And although we do not investigate the performance of fishbone warehouse for the general
order picking problem (with more than two locations visited per tour), this result indicates
that the performance of fishbone warehouses are likely to be poor in such an environment.

For dual-command travel, we see in Figure 9(c) that the fishbone design minimizes the
expected dual-command travel distance in warehouses (7" = 1000) that are 15 aisles wide or
wider, whereas the warehouse with a conventional middle cross aisle has the lowest expected
travel for warehouses with fewer than 15 aisles. For 7' = 1000 and n = 15, the warehouses
are approximately square (i.e., the half-warehouses are approximately twice as tall as they
are wide). That is, the point where fishbone dominates the traditional warehouses occurs

when the warehouses are approximately square. A similar analysis is shown in Figure 10
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Figure 9: Fishbone design and equivalent traditional designs, 7" = 1000, (a) Single-command
travel distance, (b) Travel-between, (c¢) Dual-command travel distance.

for four other warehouse sizes, where for T" = 300, 500, 2000 and 3000, the number of aisles
that correspond to approximately square warehouses are 9, 11, 21 and 25, respectively (as
indicated by the solid vertical lines).

The results in Figure 10 suggest a general design rule: For existing facilities where the
shape of the warehouse is fixed (and aisle widths are similar to our assumptions) the choice
of aisle design depends on the shape. For warehouses that are taller than they are wide,
the conventional perpendicular cross aisle is probably best, because it provides significant
improvement for travel-between. However, for warehouses that are wider than they are

tall, the fishbone design is preferred because the expected single-command travel distance

24



180 - Traditional WH 200 -
= = = ' Traditional WH with middle aisle

—— Fishbone

140 A 160

E[DC] E[DC]
100 - 120 4
60 ‘ ‘ ; 80 ‘ ‘ ;
0 10 20 30 0 10 20 30
Warehouse width - number of vertical aisles Warehouse width - number of vertical aisles
(a) T =300 (b) T=500
450 - 650 -
350 500 4
E[DC] E[DC]
250 350
150 ; ; : \ w 200 ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 0 10 20 30 40 50
Warehouse width - number of vertical aisles Warehouse width - number of vertical aisles
(c) T=2000 (d) T=3000

Figure 10: E[DC] for fishbone designs and equivalent traditional designs.

is much lower and the perpendicular cross aisle does not provide as much advantage for
travel-between over a fishbone aisle design. As discussed earlier, the optimal fishbone design
for dual-command travel is an approximately square half-warehouse, which is illustrated in
Figure 10 with dashed vertical lines.

When designers have control over the shape of the storage area, as in a greenfield design,
the fishbone design is always better than both of the traditional designs. Figure 11(a)
shows the improvement of optimal fishbone warehouses over optimal traditional designs for
a range of warehouse sizes. For all values of T', the fishbone design improves upon the
traditional warehouse with a middle cross aisle by approximately 10%, and improves upon
the traditional warehouse by up to 15.5%. The fishbone warehouses evaluated in Figure 11(a)

are larger than the conventional warehouses, as indicated in Figure 11(b). Notice that the
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curves are not smooth, due to the discrete changes in the number of aisles in each design.
The comparison with the traditional warehouse in Figure 11(a) illustrates the decreasing
influence of the space consumed by the cross aisle as the warehouse increases in size (i.e.,
the percent improvement of the optimized fishbone warehouse improves as the warehouse
size increases, because the negative effect of the additional cross aisle on space utilization
decreases as the warehouse size increases). The values used to generate Figures 11(a)

and 11(b) can be found in Table 2, Appendix D.
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Figure 11: (a) Percent improvement of optimal fishbone designs over optimal traditional
designs for dual-command travel distance; (b) Percent increase in area for optimal fishbone
designs over optimal traditional designs.

6 Conclusions & Future Research

Gue and Meller (2006) proposed the fishbone aisle design and showed that up to a 20%
reduction in single-command travel distance is possible, as compared to a traditional ware-
house with parallel aisles. We extend their work by developing an analytical expression for
the expected travel distance between locations in a fishbone warehouse. Combining this
expression with the existing expression for single-command travel distance allows us to opti-
mize fishbone aisle designs for dual-command use, and to make a thorough comparison with
traditional warehouses.

We compare dual-command travel distance in fishbone warehouses to dual-command
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travel distance in traditional warehouses with the same total picking aisle length. We op-
timize the shape of each warehouse by choosing the number of aisles (number of vertical
aisles in the fishbone warehouses) that minimizes dual-command travel distance. For the
fishbone designs, we also orient the diagonal aisles in a way that minimizes dual-command
travel distance by choosing the best slope from a set of discrete possibilities.

Our main result is that

A properly-designed fishbone warehouse reduces dual-command travel by approx-

imately 10%-15%.

That is, when designers have control over the shape of the warehouse, a fishbone design
can always be found that improves upon the traditional designs. A fishbone warehouse will
reduce dual-command travel by almost 10%, when compared to a traditional warehouse with
a middle cross aisle, and by up to 15.5% when compared to a traditional warehouse without
a middle aisle. We note that the latter improvement comes at a “cost” of a facility that is
approximately 5% larger.

A secondary result relates to two design rules for fishbone warehouses that

perform dual-command operations.

The best, or nearly-best, design is obtained by (1) choosing a ware-
house shape that is approximately a square half-warehouse, and (2)
extending the diagonal cross aisle to the upper corners of the picking

space.

Such a design is also best or nearly-best when a warehouse is performing single-
command operations.

We also compare warehouses with the same total picking aisle length over a variety of
warehouse shapes. When the shape of the warehouse area is given, such as in an existing
facility, we see that for warehouses that are taller than they are wide, a traditional warehouse
with a middle cross aisle is preferred. However, for warehouses that are wider than they are

tall, the fishbone design provides the shortest travel distances.
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Our research can be extended in several directions. Because some unit-load warehouses
do not use randomized storage, the performance of fishbone designs under other storage
policies can be investigated. Possibilities include storage policies based on relative product
velocities, such as full-turnover and class-based turnover strategies.

We are also considering new aisle layouts that are designed particularly for dual-command
travel. There may exist entirely new designs that perform better than the fishbone design for
dual-command operations. Finally, new designs should be developed for the general order
picking problem, with more than two locations visited per tour. We believe this is a very

challenging problem, whose solution would find many applications in industry.
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Appendices (intended as an online supplement)

A Travel Within a Region

A.1 Distribution of Z

We assume the storage and retrieval activities are distributed uniformly along each aisle
length, therefore X; ~ U(0, L;) and Y; ~ U(0, L;). We let Z;; = X;+Y], and use convolution
to determine the probability density function of Z;;. If aisles 7 and j are the same length,
the density of Z;; is triangular. If the aisle lengths are different, with L; > L;, the density of

Z;j is an isosceles trapezoid (Killmann and von Collani, 2001), as shown in Figure 12, and

expressed as

LiZLj for 0 < 2z < L,

1

L_j fOI'LiSZ<Lj,
L,+L;,—=z

Tlij for L; <z<L;+Lj.

Figure 12: Probability density function of Z;; = X; +Y; when X; ~ U(0,L;) and Y; ~

U(0, L;).



The cumulative distribution for Z;; is found by using the relationship Fz(z) = [; fz(u) du.

For the interval 0 < z < L;,
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A.2 Distribution of Z Conditioned on ¢;;

We find fz)z<q,; and fz|z>q,;, by using the relationships

Pr(Zy <z, Ziy < qj)  Fz(2)

FZ|Z§qij = PT(Zz‘j < Z|Zz] < sz) - PT(Z < q) - Fz(Q) (12)
17 > {ij ij
and
Fy1z5q; = Pr(Zij < 2|Zi; > qij) = 1 — Pr(Zij > 2|Zi; > qij)

:1_P7’(Zm >Z,Z¢j >Qz]) 1 1—Fz(Z>

Pr(Zi; > ) 1 — Fz(qi)
_ Fy(2) = Fylai) (13)

L= Fy(gy)

and differentiating. Since F7 is a piecewise function, we must derive fzjz<4, and fzz-q,;
for three intervals of ¢;;. This process, while not difficult, is tedious, therefore we provide
the derivations for only the first interval, 0 < ¢;; < L;, and simply present the results for the
two remaining intervals, L; < ¢;; < L; and L; < ¢;; < L; + L;.

If 0 < g < Ly, then to calculate fzz<,,; we need only consider the first interval of Fz,

since Z;; can be less than ¢;; only in that interval. Therefore, using (12),

Fz(z) . 2’2 <2LZLJ) 2_2

© Fa(qy)  2LiL, q; 27

FZ\Zquj
4;;

and

d 2z
f212<q,(2) = EfZ\ZSQij(Z) - q_z2j

To derive fz)z5q,; When 0 < ¢;; < L;, we must consider all three intervals of Fz, since it
is possible that Z;; > ¢;; in any of the three intervals. Fy(z) is different for each interval,

however Fy(g;;) does not change, and 1 — Fz(g;;) = (2L;L; — ¢;;)/(2L;L;). Using (13) we



find that for ¢;; < z < L;,
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When we differentiate (14)—(16) with respect to z, the resulting density function is
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For the remaining two intervals of ¢;;, we present the resulting density functions, but

leave the derivation to the reader. If L; < ¢;; < L;, then

( z
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B Travel Between Regions 1 and 2

There are two cases to consider when the travel is between a location in Region 1 and
a location in Region 2. These two cases depend upon the relative positions of the picking
aisles and will be discussed in the following sections. As shown in Figure 4, we let 9; represent
the integer number of aisle widths between the bottom picking aisle and aisle 7, and let §;
represent the integer number of aisle widths between the center vertical aisle in Region 2

and aisle j. The distance between aisles ¢ and j along the diagonal cross aisle is |0;d, — d;dp|.
B.1 Case A

In case A (Figure 4) aisles ¢ and j meet two conditions: they are both on the left side of the
warehouse, and the intersection of aisle ¢ with the diagonal cross aisle is closer to the P&D
point than the intersection of aisle j with the cross aisle. When these two conditions are met,
the shortest path uses either the left vertical cross aisle or the diagonal cross aisle. When the

left vertical cross aisle is used to reach aisle j, the worker traverses the vertical cross aisle



and then one of two picking aisles in Region 1, j' or j”. Aisle j’ in Figure 4 intersects the
diagonal cross aisle at the same point as aisle j, or slightly farther up the cross aisle, while
aisle j” intersects the diagonal cross aisle slightly below aisle j. To determine the difference
between these two options, we define P;; as the minimum of the paths that use aisles j' and

-1/

J
PZJ = min {(j/ - Z)a’ + Lj/ + (5j/dh - 5jdv7 (j” - Z)CL + Lj// + (5]dv — 5j//dh} y

or equivalently,

. (j' = i)a+ Ly + 6pdy, — 6;dy  if 20;d, — 285d), > a(l — 1/m) — dy,
ij —
(j// . i)a 4 Lj” + (dev — 5j”dh otherwise.

The shortest distance using the vertical cross aisle is then « + 2v + P;; + 2w + (L; — y).
The other choice is the path that uses only the diagonal cross aisle, with length (L; —
x) + 2w+ 0;d, — 6;dp, + (L; — y). We are indifferent about which path to choose when they

are the same length. That is, when
T+420+2w+ P+ (L —y) = (L — x) + 2w + 6;d, — 0;dp + (L — y),

and

1
r = 5 [Ll - P)ij +5jdv - 5,dh] — .

We see that our choice depends only on the value of x, and is independent of ¥, since in both
paths we enter aisle j from the same end. Let ¢j; be a parameter associated with aisles ¢
and 7, where its value is the same as the variable x only when the two paths are equivalent
in length. That is,

1
qu = 5 [Lz — Hj + 5jdv — (Szdh] — V.

If ¥ = ¢f;, the alternative paths are the same length (by definition), and we are indifferent
about which to choose. If x < ¢, the shortest path between locations uses the left vertical

cross aisle, and if z > ¢;;, the shortest path uses the diagonal cross aisle. Since Xj is uniformly



distributed, Pr(z < ¢j;) = qf;/L;. For case A, the expected travel between a location in aisle

1 of Region 1 and a location in aisle j of Region 2 is

B[TBY] = [E[X|X < g +2(v+w)+ Py + L — B[Y]] Pr(z < ¢f,)

E[X|X > ¢&] + 2w+ 6;d, — &dy, + L; — E[Y]] Pr(z > ¢f})

qw Li| (4
= 2( P, L;
{ + v+w+ j T+ 2](&)

L z
[ q”+2w+(5d 5idh+Lj—7J} (1—%)

1 q;;
e

[

— qi;) + 2w + 9;d, — 6idh1 (1 - %) : (17)

l\DIH

B.2 Case B

Case B applies to all aisle combinations that do not meet the conditions of case A. This
includes aisles ¢ and j that share the same side of the warehouse, but the intersection of
aisle j with the cross aisle is closer to the P&D point (or the same distance). Case B also
includes the instances when aisles ¢ and j are on opposite sides of the warehouse. The
potential shortest paths between locations for case B are illustrated in Figure 5. When the
top horizontal cross aisle is used to reach aisle j, the worker traverses one of two picking
aisles in Region 2, i’ or 7", and then the horizontal cross aisle. Aisle i’ in Figure 5 intersects
the diagonal cross aisle at the same point as aisle ¢, or slightly farther up the cross aisle, while
aisle 7" intersects the diagonal cross aisle slightly below aisle i. To determine the difference

between these two options, we define Pj; as

P = min {5 d 5Zdh + Li’ + a(] - il), 6zdh — 6i”d’u —+ Li” + CL(] — /L'”)} ,

or equivalently,



P 5i’dv — 52dh + Li/ + Cl(j - Z/) if 25zdh — 25i’dv > a(l - TTL) — dv,
iy
5idh — 5i”dv + Li// + (1(] - ?:”) otherwise.

The shortest distance using the perpendicular cross aisle is then (L; —z)+2w+P;;+2v+y.
The other choice is the path which uses only the diagonal cross aisle. If aisles ¢ and j are on
opposite sides, as shown in Figure 5, the length is (L; — x) + 2w + 6;d, + 0;d, + (L; —y). If
aisles ¢ and j are on the same side, the length is (L; — ) + 2w + 6;dj, — 0,;d, + (L; —y). We

define D;; as the distance along the diagonal cross aisle,

5 0;idp + 6;d, if 4, are on opposite sides,
ij =
0;dp, — d;d, if 4, j are on the same side.

The total distance between locations using the diagonal cross aisle is then (L; — x) + 2w +
D;;+ (L; — y). All potential paths access aisle ¢ from the same end, therefore the choice of
paths is independent of x.

There are aisle combinations where the shortest travel path always uses one of the two
cross aisles, and is independent of both z and y. For example, if aisle ¢ is the topmost
aisle in Region 1 and aisle j is the far right aisle in Region 2, for some parameter values,

travel-between will always use the top perpendicular cross aisle. In this case,

(Li—x)+2w+Pjj+2v+y < (Li—x)+2w+ D+ (Li—y) V0<z<L;,0<y<L,; (18)

If (18) holds for y = L; then it holds for all y, and

]Dij+2’U+Lj < DU (19)

When (19) holds, the perpendicular cross aisle will always provide the shortest path, and
the expected value of the distance between the two locations is (L; + L;)/2 4+ P;; + 2v + 2w.
Conversely, for other aisle combinations, the diagonal cross aisle will always provide the

shortest travel distance. For example, if aisle ¢ is the bottom picking aisle in Region 1, then



travel to any of the aisles on the right side of Region 2 will use the diagonal cross aisle. For

this instance,
(Li—x)+2w+Pjj+2v+y > (Li—x)+2w+ D+ (Li—y) V0<z<L;,0<y<L,; (20)
If (20) holds for y = 0 then it holds for all y, and
Pj+2v>D;+ L, (21)

When (21) holds, the diagonal cross aisle will always provide the shortest path, and the
expected value of the distance between the two locations is (L; + L;)/2 + D;; + 2w.
If (19) and (21) do not hold, then the choice of cross aisles depends on y. We are

indifferent about which cross aisle to use when the paths are the same length. That is, when
(Li—x)+2w+ P +2v+y=(L; — )+ 2w+ Dy + (L; — y),

and

1
yzi[Lj—i_Dij_Pi‘]_v-

We define qg’j, as a parameter of aisles ¢ and j, that equals y only when the two paths
are equivalent. That is,

1

If y = qf;, the alternative paths are equivalent (by definition). If y < ¢f;, the shortest path
between locations uses the horizontal cross aisle, and if y > q;yj, the shortest path uses the
diagonal cross aisle. Since Y; is uniformly distributed, Pr(y < qf]) = qu/ L;. For case B, the

expected travel between a location in aisle i of Region 1 and a location in aisle j of Region

2, when the travel depends on ¢}, is



12(B
E[TBij( )|qu] = [Li— B[X]+2w+ P+ 20+ E[Y]Y < ¢/}]] Pr(Y < ¢},)
+[L; — E[X]+2w+ Dy + L; — EY|Y > qgf]ﬂ Pr(Y > g}

L 8 (dh
= [Li—E%—Qw—i—Pij—i-Qv—l—&} (&>

2 L;
Li—=+2 D;:+ L; — Y 1—- 24
—l—[ 5 + 2w + Di; + Lj 5 I,

_ E(Li+q§’j)+ﬂj+2(”+w)} (%>

J

1 a;;

The expected travel between locations in Regions 1 and 2, for case B, is then

(1
§(L1+Lj)+Pij+2(’U+’w> if P;j +2v+ L; < Dy,
1
—(LZ‘FL])‘{‘D”—'—QU) lfPlJ+2fU>DU+L],
E[TB?®)] = 2
ij
1 y %
J
1 i
[5([4 + Lj —q}) + Dij + Qw} (1 — %) otherwise.
J

C Travel Between Regions 1 and 3

As shown in Figure 6, we let §; and §; be the number of aisle widths between the bottom
picking aisle and aisles ¢ and j, respectively. The distance between aisles 7 and j along
the diagonal cross aisle is then dj(d; + ;). Travel between locations will use either the
diagonal cross aisle, or the top horizontal cross aisle. If travel is along the top horizontal
cross aisle, there are potentially two alternative paths from aisle ¢ to the top cross aisle, and
two alternative paths from aisle 5 to the top cross aisle. We therefore consider the upper
path in two segments, as shown in Figure 6, where the left segment is the path between the

location in aisle ¢ and the center of the top cross aisle, and the right segment is the path
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between the location in aisle j and the center of the top cross aisle. The left segment uses

either aisle i’ or aisle i and is independent of aisle j, so we define P; as

]DZ' = min {(Si/dv — 5zdh -+ Li/ —+ (Ii/, 5zdh — 6i”dv + Li// + ai”} y
or equivalently,

0ydy — 8;dy, + Ly + ai’ if 26;d;, — 20,d, > &(1 — m) —d,,

0;dy, — 0vdy + Ly + ai”  otherwise.
Similarly, the right segment uses either aisle j' or aisle j” and is independent of aisle i, so
we define P; as

P (Sj/dv — 5jdh + Lj/ + CLj, if 25jdh — 25j’dv > Cl(l — m) — dv,

J
6jdh — (Sj//du + Lj// + aj” otherwise.

Since we always enter the picking aisles through the same ends, the best cross aisle to
use can be determined without knowing the exact locations within their aisles (z and y); we
need only know the aisles which contain the two locations. If P,+ P; +2(v+w) < dy(8; + 6;)
then travel between locations will use the top cross aisle. Otherwise, travel with be along
the diagonal cross aisle. The total expected distance between a location in aisle i of Region

1 and a location in aisle 5 of Region 3 is then

1
E(TB;}) =

v

1
§(Li + L;)+dp(6; +0;) +2w  otherwise.
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D Supporting Data Tables

Table 1: Expected Dual-Command Travel Distance for 7' = 300 over a Range of Warehouse
Widths and Cross Aisle Slopes

No. Cross No. Cross No. Cross No. Cross No. Cross
Vertical Aisle Vertical Aisle Vertical Aisle Vertical Aisle Vertical Aisle
aisles Slope E[DC]| aisles Slope E[DC]| aisles Slope E[DC] aisles Slope E[DC] aisles Slope E[DC]
3 56.17 371.50 9 2.31 93.93 15 0.71 85.96 21 0.34 10294 27 0.20 126.82
3 51.69 372.93 9 2.12  93.65 15 0.66  85.97 21 0.31 102.44 27 0.18 12531
3 47.21 371.20 9 1.94 93.27 15 0.60 86.24 21 0.29 102.93 27 0.17 123.52
3 4273 366.21 9 176~ 92.92 15 0.55 86.97 21 0.26  103.50 27 0.15 124.12
3 38.25 358.09 9 1.57  92.50 15 049  87.59 21 0.24  104.18 27 0.14  125.51
3 33.77 346.95 9 1.39  92.01 15 0.44  88.63 21 0.21  104.90 27 0.12  126.81
3 29.29 332.88 9 1.20  91.80 15 0.38  89.59 21 0.19  106.30 27 0.11  127.58
3 24.81 315.98 9 1.02 91.29 15 0.33  90.52 21 0.16 107.59 27 0.09 127.26
3 20.33  296.36 9 0.84 91.37 15 0.27  92.06 21 0.14 108.54 27 0.08 126.85
3 15.85 274.19 9 0.65 91.63 15 0.22  93.33 21 0.11 108.27 27 0.06 128.24
3 11.37 249.49 9 047  92.13 15 0.16 9448 21 0.08 110.17 27 0.05 129.65
3 6.89 221.45 9 0.28  94.10 15 0.11 96.03 21 0.06 111.24 27 0.03  131.09
3 241  189.38 9 0.10  93.80 15 0.05  96.76 21 0.03  112.37 27 0.02 132.55
5 10.82 178.32 11 144  85.40 17 0.54  90.30 23 0.28 110.13 29 0.17 134.77
5 9.95 176.69 11 1.32 8524 17 0.50  90.40 23 0.26  110.10 29 0.16 132.06
5 9.09 173.88 11 1.21 85.35 17 0.46  90.75 23 0.24  110.09 29 0.14 131.27
5 8.66 172.34 11 1.16  85.44 17 043 90.97 23 022  110.17 29 0.14 131.72
5 7.79 168.76 11 1.04 8541 17 0.39  91.82 23 0.20 110.21 29 0.12 132.63
5 6.93 164.65 11 0.93 85.81 17 0.35 9285 23 0.18 111.36 29 0.11 133.73
5 6.07 160.05 11 0.82  86.03 17 0.31 93.81 23 0.16 112.84 29 0.10 134.41
5 520 155.00 11 0.71 86.53 17 0.27  95.07 23 0.14  114.09 29 0.09 133.99
5 434 14949 11 0.60  87.11 17 0.22  96.32 23 0.12  114.67 29 0.07 132.65
5 347 14354 11 0.48  88.03 17 0.18  97.60 23 0.09 114.95 29 0.06 134.13
5 2.61 137.19 11 0.37  89.13 17 0.14  98.34 23 0.07 116.15 29 0.05 135.64
5 1.75 130.64 11 0.26 90.66 17 0.10 100.07 23 0.05 117.40 29 0.04 137.16
5 0.88 124.88 11 0.15  91.90 17 0.06 100.93 23 0.03 118.69 29 0.02 138.70
7 432 116.69 13 098  83.61 19 042 9646 25 023  118.51 31 0.15 142.15
7 398 116.14 13 0.90  83.77 19 0.39  96.13 25 021 117.89 31 0.14  139.66
7 3.64 115.13 13 0.83  84.02 19 0.36  96.19 25 0.20 117.16 31 0.12  140.05
7 330 113.89 13 0.75 84.48 19 032 97.07 25 0.18 116.31 31 0.11 140.51
7 296 11245 13 0.67  85.03 19 029  98.08 25 0.16 117.78 31 0.10 141.02
7 2.62 11095 13 0.59  85.68 19 026  98.82 25 0.14 119.24 31 0.09 141.35
7 228 109.19 13 0.52  86.56 19 0.23  100.00 25 0.13  120.44 31 0.08 140.02
7 1.94 107.31 13 0.44  87.49 19 0.20 101.29 25 0.11 121.01 31 0.07 139.29
7 1.59 105.50 13 0.36  88.98 19 0.16 102.51 25 0.09 120.18 31 0.05 141.02
7 1.25  103.92 13 0.28  90.03 19 0.13 103.16 25 0.08 121.50 31 0.04 142.76
7 091 102.60 13 0.21 91.53 19 0.10 104.59 25 0.06 122.78 31 0.03 144.52
7 0.57 101.69 13 0.13  93.03 19 0.07 105.53 25 0.04 124.09 31 0.02  146.30
7 0.23  101.49 13 0.05  93.60 19 0.04 106.54 25 0.02 12543 31 0.01  148.09
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Table 2: Percent Difference in Expected Dual-Command Travel and Areas for Fishbone and
Traditional Warehouse Designs

E[DC] Area

T Fishbone | Layout A  %diff | Layout B %diff | Fishbone | Layout A %diff | Layout B  %diff
50 37.8 414 8.8% 42.7 11.5% 520.6 400.0 30.2% 475.0 9.6%
100 51.5 57.3 10.1% 56.7 9.2% 863.9 710.0 21.7% 725.0 19.2%
150 614 68.8 10.8% 67.5 9.0% 1192.2 960.0 24.2% 1065.0 11.9%
200 69.5 78.9 11.9% 77.1 9.9% 1501.0 1270.0 18.2% 1405.0 6.8%
250 774 88.0 12.0% 85.0 8.9% 1808.1 1520.0 19.0% 1655.0 9.2%
300 83.6 95.8 12.7% 92.7 9.9% 2103.9 1830.0 15.0% 1995.0 5.5%
350 90.0 103.2 12.8% 99.2 9.2% 2404.1 2080.0 15.6% | 2245.0 7.1%
400 95.7 110.1 13.1% 105.6 9.3% 2692.5 2390.0 12.7% | 2495.0 7.9%
450 100.9 116.4 13.3% 111.5 9.6% 2977.8 2640.0 12.8% | 2835.0 5.0%
500 106.3 122.7 13.4% 117.0 9.1% 3268.2 2890.0 13.1% 3085.0 5.9%
550 110.8 128.3 13.6% 122.4 9.5% 3555.2 3200.0 11.1% | 3335.0 6.6%
600 115.4 133.8 13.8% 127.6 9.5% 3835.0 3450.0 11.2% | 3675.0 4.4%
650 120.0 139.3 13.8% 132.3 9.3% 4119.5 3700.0 11.3% 3925.0 5.0%
700 124.1 144.2 13.9% 137.0 9.4% 4403.6 4010.0 9.8% 4175.0 5.5%
750 128.1 149.1 14.1% 141.7 9.6% 4677.6 4260.0 9.8% 4425.0 5.7%
800 132.2 153.9 14.1% 145.9 9.4% 4962.5 4510.0 10.0% 4765.0 4.1%
850 136.2 158.6 14.1% 150.1 9.3% 5238.6 4820.0 8.7% 5015.0 4.5%
900 139.6 162.9 14.3% 154.2 9.5% 5514.7 5070.0 8.8% 5265.0 4.7%
950 143.3 167.2 14.3% 158.4 9.6% 5790.1 5320.0 8.8% 5515.0 5.0%
1000 146.9 171.6 14.4% 162.2 9.4% 6068.8 5570.0 9.0% 5855.0 3.7%
1050 150.5 175.7 14.4% 165.9 9.3% 6344.3 5880.0 7.9% 6105.0 3.9%
1100 153.5 179.6 14.5% 169.6 9.5% 6617.2 6130.0 7.9% 6355.0 4.1%
1150 156.8 183.6 14.6% 173.3 9.5% 6889.8 6380.0 8.0% 6605.0 4.3%
1200 160.2 187.5 14.6% 177.0 9.5% 7167.8 6630.0 8.1% 6945.0 3.2%
1250 163.3 191.3 14.6% 180.3 9.4% 7438.4 6940.0 7.2% 7195.0 3.4%
1300 166.4 194.9 14.6% 183.7 9.4% 7714.3 7190.0 7.3% 7445.0 3.6%
1350 169.2 198.5 14.7% 187.0 9.5% 7980.8 7440.0 7.3% 7695.0 3.7%
1400 172.3 202.1 14.7% 190.4 9.5% 8256.5 7690.0 7.4% 7945.0 3.9%
1450 175.3 205.7 14.8% 193.7 9.5% 8526.8 7940.0 7.4% 8285.0 2.9%

1500 178.2 209.1 14.8% 196.7 9.4% 8798.8 8250.0 6.7% 8535.0 3.1%
1550 180.9 212.4 14.8% 199.8 9.5% 9069.6 8500.0 6.7% 8785.0 32%
1600 183.6 215.7 14.9% 202.9 9.5% 9336.3 8750.0 6.7% 9035.0 3.3%
1650 186.4 219.0 14.9% 206.0 9.5% 9610.9 9000.0 6.8% 9285.0 3.5%
1700 189.1 222.3 14.9% 209.0 9.5% 9878.8 9250.0 6.8% 9535.0 3.6%
1750 191.8 225.5 14.9% 211.9 9.5% 10148.7 9560.0 6.2% 9875.0 2.8%
1800 194.4 228.5 14.9% 214.7 9.5% 10420.0 9810.0 6.2% 10125.0  2.9%
1850 196.8 231.6 15.0% 217.5 9.5% 10684.0 10060.0  6.2% 10375.0  3.0%
1900 199.4 234.6 15.0% 220.4 9.5% 10954.8 10310.0  6.3% 10625.0  3.1%
1950 202.0 237.7 15.0% 2232 9.5% 11225.5 10560.0  6.3% 10875.0  3.2%
2000 204.4 240.7 15.1% 226.0 9.5% 11491.1 10870.0  5.7% 11215.0  2.5%
2050 206.9 243.6 15.1% 228.6 9.5% 11762.9 111200  5.8% 114650  2.6%
2100 209.2 246.4 15.1% 231.2 9.5% 12027.3 11370.0  5.8% 11715.0  2.7%
2150 211.6 249.3 15.1% 233.9 9.5% 12292.7 11620.0  5.8% 11965.0  2.7%
2200 214.0 252.2 15.1% 236.5 9.5% 12563.9 118700  5.8% 122150  2.9%
2250 216.4 255.0 15.2% 239.1 9.5% 12830.4 12120.0  5.9% 12465.0  2.9%
2300 218.6 257.8 15.2% 241.7 9.5% 13096.0 12430.0  5.4% 12715.0  3.0%
2350 221.0 260.5 15.2% 2442 9.5% 13366.9 12680.0  5.4% 13055.0  2.4%
2400 223.1 263.1 15.2% 246.6 9.5% 13629.8 12930.0  5.4% 13305.0 2.4%
2450 2253 265.8 15.2% 249.1 9.5% 13894.1 13180.0  5.4% 13555.0  2.5%
2500 227.6 268.5 15.2% 251.5 9.5% 14163.4 134300  5.5% 13805.0  2.6%
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E[DC] Area

T Fishbone | Layout A  %diff | Layout B %diff | Fishbone | Layout A %diff | Layout B %diff
2550 229.8 271.1 15.2% 254.0 9.5% 14430.5 13680.0 5.5% 14055.0 2.7%
2600 231.9 273.8 15.3% 256.4 9.5% 14693.9 13990.0 5.0% 14305.0 2.7%
2650 234.1 276.3 15.3% 258.8 9.6% 14962.1 14240.0 5.1% 14555.0 2.8%
2700 236.3 278.8 15.3% 261.1 9.5% 15228.2 14490.0 5.1% 14895.0 2.2%
2750 238.3 281.3 15.3% 263.4 9.6% 15489.7 14740.0 5.1% 15145.0 2.3%
2800 240.4 283.8 15.3% 265.7 9.5% 15755.7 14990.0 5.1% 15395.0 2.3%
2850 242.5 286.3 15.3% 268.0 9.5% 16026.2 15240.0 5.2% 15645.0 2.4%
2900 244.5 288.9 15.3% 270.3 9.5% 16287.5 15490.0 5.1% 15895.0 2.5%
2950 246.5 291.3 15.4% 272.5 9.5% 16551.7 15800.0 4.8% 16145.0 2.5%
3000 248.6 293.7 15.4% 274.8 9.6% 16820.2 16050.0 4.8% 16395.0 2.6%
3050 250.6 296.0 15.4% 277.0 9.5% 17082.8 16300.0 4.8% 16735.0 2.1%
3100 252.5 298.4 15.4% 279.2 9.6% 17344.4 16550.0 4.8% 16985.0 2.1%
3150 254.5 300.8 15.4% 281.3 9.5% 17610.0 16800.0 4.8% 17235.0 2.2%
3200 256.5 303.1 15.4% 283.5 9.5% 17879.6 17050.0 4.9% 17485.0 2.3%
3250 258.4 305.5 15.4% 285.6 9.5% 18139.8 17300.0 4.9% 17735.0 2.3%
3300 260.3 307.8 15.4% 287.7 9.5% 18403.0 17610.0 4.5% 17985.0 2.3%
3350 262.2 310.1 15.4% 289.9 9.6% 18670.1 17860.0 4.5% 18235.0 2.4%
3400 264.1 312.3 15.4% 292.0 9.5% 18936.3 18110.0 4.6% 18485.0 2.4%
3450 265.9 314.5 15.5% 294.1 9.6% 19193.8 18360.0 4.5% 18825.0 2.0%
3500 267.8 316.8 15.5% 296.1 9.5% 19457.6 18610.0 4.6% 19075.0 2.0%
3550 269.7 319.0 15.4% 298.1 9.5% 19725.0 18860.0 4.6% 19325.0 2.1%
3600 271.6 321.3 15.5% 300.1 9.5% 19988.0 19110.0 4.6% 19575.0 2.1%
3650 273.3 323.5 15.5% 302.2 9.5% 20249.1 19360.0 4.6% 19825.0 2.1%
3700 275.1 325.6 15.5% 304.2 9.6% 20513.6 19670.0 4.3% 20075.0 2.2%
3750 276.9 327.8 15.5% 306.2 9.6% 20781.5 19920.0 4.3% 20325.0 2.2%
3800 278.7 329.9 15.5% 308.2 9.6% 21039.7 20170.0 4.3% 20575.0 2.3%
3850 280.5 332.0 15.5% 310.2 9.6% 21300.7 20420.0 4.3% 20915.0 1.8%
3900 282.3 334.1 15.5% 312.1 9.5% 21564.9 20670.0 4.3% 21165.0 1.9%
3950 284.1 336.3 15.5% 314.0 9.5% 21832.4 | 20920.0 4.4% 21415.0 1.9%
4000 285.8 338.4 15.5% 315.9 9.5% 22092.3 21170.0 4.4% 21665.0 2.0%
4050 287.5 340.5 15.6% 317.8 9.6% 22353.4 | 21480.0 4.1% 21915.0 2.0%
4100 289.2 342.5 15.6% 319.7 9.6% 22617.6 21730.0 4.1% 22165.0 2.0%
4150 290.9 344.5 15.6% 321.7 9.6% 22884.8 21980.0 4.1% 22415.0 2.1%
4200 292.6 346.6 15.6% 323.6 9.6% 23142.2 | 22230.0 4.1% 22665.0 2.1%
4250 294.3 348.6 15.6% 325.5 9.6% 23402.5 22480.0 4.1% 22915.0 2.1%
4300 296.0 350.6 15.6% 327.3 9.6% 23665.9 22730.0 4.1% 23255.0 1.8%
4350 297.7 352.6 15.6% 329.1 9.5% 23932.1 22980.0 4.1% 23505.0 1.8%
4400 299.4 354.6 15.6% 330.9 9.5% 24193.0 | 23230.0 4.1% 23755.0 1.8%
4450 301.0 356.7 15.6% 332.8 9.6% 24452.9 23480.0 4.1% 24005.0 1.9%
4500 302.6 358.6 15.6% 334.6 9.6% 24715.6 23790.0 3.9% 24255.0 1.9%
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