
A Unit-Load Warehouse with Multiple Pickup &
Deposit Points and Non-Traditional Aisles

Kevin R. Gue Goran Ivanović
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Abstract

We show how to configure a cross aisle in a unit-load warehouse to facilitate travel
between storage locations and multiple pickup and deposit points on one side. We use
our models to investigate designs having two types of cross aisles—those that form a
“Flying-V” and those that form an “Inverted-V.” Our numerical results suggest that
there is a benefit to using a Flying-V aisle design, but the benefit is more modest than
in the case of a single P&D point. Thus, to the extent practicable, pickup and deposit
points should be concentrated toward the middle of the warehouse.

[The Appendix at the end of this manuscript is intended as an online supplement.]



1 Introduction

The role of worldwide logistics continues to grow as manufacturers and markets become more

distributed (Bartholdi et al., 2008). An important node in these logistics systems is the

distribution center (or warehouse), where incoming goods are held until the final destination

of the goods is known. With more than 500,000 warehouses in the U.S. alone (Energy

Information Administration, 2006), models that assist in their design have the potential for

significant application. Recent survey papers by Gu et al. (2007, 2009) illustrate the breadth

and depth of research in this area, with models covering both design and analysis of the many

subsystems of a distribution center. However, until recently, a fundamental question about

the design of the aisles used to facilitate flow within the warehouse was left unanswered.

In a warehouse, racks are traditionally arranged to form parallel picking aisles and per-

haps one or more orthogonal cross aisles, which facilitate flow but contain no product. In a

traditional unit-load warehouse, in which products are received, stored, and handled (typi-

cally) on pallets, there is no advantage to inserting a cross aisle because doing so effectively

moves half of the product farther from the pickup and deposit point (Pohl et al., 2009a).

Gue and Meller (2009) described non-traditional designs in which the “rules” requiring par-

allel picking aisles and orthogonal cross aisles were relaxed. They addressed the question

of how to design an inserted cross aisle to facilitate flow in a unit-load warehouse from

a single, centrally-located pickup & deposit (P&D) point, showing the expected distance

between a central P&D point and a location in the warehouse can be reduced by insert-

ing non-orthogonal cross aisles, and by orienting the picking aisles in different directions.

They developed two designs from non-linear optimization models. The Flying-V design (see

Figure 1), which contains a cross aisle projecting diagonally in a piecewise linear fashion

from the P&D point, offers approximately a 10 percent reduction in expected distance to a

random location for reasonably-sized warehouses. The Fishbone design (Figure 1) confers

a reduction of about 20 percent. An early paper by White (1972) proposed “radial aisles”

that are similar in spirit to the fishbone design.

Additional work in the area of non-traditional aisle design has modified some of the
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Figure 1: The Flying-V and Fishbone designs introduced by Gue and Meller (2009).

assumptions presented in Gue and Meller (2009). For example, Pohl et al. (2009b) consider

the design of fishbone aisles when the operating protocol is dual-commands (sometimes called

task interleaving), in which each trip into the warehouse space visits two locations—first a

stow, then a retrieval, then back to the P&D point. They showed that for dual-command

operations, the fishbone design is superior to a traditional design both with and without a

(traditional) middle aisle, although the benefit is not quite as great as in the single-command

case. For dual commands, the expected distance in a fishbone design is approximately 10–15

percent less than in a comparable, traditional design.

Pohl et al. (2009c) examine two non-traditional aisle designs and three traditional designs

under dedicated (rather than random) storage policies and either single- or dual-command

operations. Their work indicates that although the fishbone design performs well in all

instances, the Flying-V does not perform well (i.e., it has difficulty outperforming traditional

designs) when the relative activity of stored items is significantly different than uniform, and

when it is operated under dual-command operations.

Prior research concerning warehouse design with multiple P&D points can be found in

Francis et al. (1992) and other textbooks, where models based on a continuous warehouse

space are used to design contour lines describing equivalent expected distances from the set

of P&D points. Because these models assume a continuous space, aisles are not considered,

other than imposing rectilinear travel in a conventional warehouse and Tchebychev travel in

an AS/RS aisle. Multiple P&D points have also been examined in the context of an order
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picking system by Eisenstein (2008), and more broadly in a manufacturing assembly facility

by Yano et al. (1998). In an abbreviated version of the present paper, Gue et al. (2008)

considered multiple P&D points in a warehouse.

Meller and Gue (2009) provide a description of two early implementations of non-traditional

aisle designs in practice. In the first, a “laydown area” is used to transfer loads from the

material handling device for removing loads from trailers to the material handling device

for storing loads (and vice versa). Such a laydown area is a good example of single P&D

point. In the second implementation, multiple P&D points were used on the receiving side of

the warehouse and the non-traditional aisle design did not offer much benefit. The positive

benefits from the aisle design were on the opposite (shipping) side, where each pallet passed

through a single stretch-wrapping machine. In both cases, managers and operators have

been happy with the designs and have reported no major difficulties.

Our review of existing research indicates that the fishbone design is generally preferred

to the Flying-V, especially for new construction (versus retrofitting an existing facility).

However, existing aisle design papers assume that travel begins and ends at a single P&D

point. For many operations, of course, this is not a good model of travel. For example,

the shipping area in a warehouse may have two, three, or even more stretch-wrap machines,

meaning that travel begins and ends from two or more points. In other applications, an

entire side of the warehouse space may contain P&D points, as in the case of a shipping area

with dozens of shipping doors. Should such warehouses be designed with a non-orthogonal

cross aisle? If so, what shape should it be and how much benefit is possible? We address

these questions in this paper.

As in Gue and Meller (2009), we are considering a unit-load warehouse, in which pallets

are received and stored until ordered, when they are moved to shipping without being broken

down into cases. In many warehouses, pallet movement is accomplished with a powered,

pallet-based material handling vehicle (pallet truck, counter-balanced lift truck, reach trucks,

or narrow-aisle straddle trucks). However, movement could also be accomplished with a

pallet jack, or in some cases, carts, for unit loads smaller than a pallet. The operating policy
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of the facility is single-command operations, in which every trip begins and ends at a P&D

location and visits a single storage location. For workload balance reasons, the worker may

serve more than one P&D point.

The requirement for the warehouse is to unload and deliver all loads from P&D points

to their storage locations (receiving) and to retrieve requested loads and take them to their

appropriate P&D points (shipping). We assume random storage and uniform usage of P&D

points, which leads to the objective to minimize the expected distance from a random dock

door to a random storage location. (Note that this objective is equivalent to minimizing the

expected distance from a random storage location to a random dock door.)

In practice, unit-load warehouses using single-command cycles use a variety of worker

assignment policies. In the simplest policy, workers are assigned exclusively to particular

doors and therefore make all their trips to the storage area from the same P&D point. Our

objective function models this policy directly. More complex policies attempt to reduce

empty travel by directing workers to nearby picks or doors after they have delivered their

unit loads. Although our objective function does not model these policies directly, it does

facilitate them by reducing expected distances between storage locations and P&D points in

general. We contend that opportunistic routing policies would tend to have the same relative

effect on any design, and therefore that a good design for operations without intelligent

routing will be a good design for operations with it as well.

Because the fishbone design has a clear orientation toward a single P&D point, we do

not consider it further here. For a symmetric warehouse with parallel picking aisles, the

cross aisle in one half is either non-monotonic, monotonically increasing (as in the Flying-

V), or monotonically decreasing. The non-monotonic case is difficult to model and, in our

judgment, not very promising. In the next section we treat the monotonically increasing case

by introducing a model of travel in a unit-load warehouse with multiple P&D points. We

use that model to determine the best shape for such a cross aisle, which we call a “modified

Flying-V,” assuming travel may begin and end at any of the multiple P&D points. In

Section 3 we treat the monotonically decreasing case, which results in an inserted cross aisle
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shaped as an “Inverted V.” In Section 4, we compare the two designs and show that the

modified Flying-V design is superior, and that the benefits from the modified Flying-V cross

aisle decrease as the number of P&D points increases. We summarize the paper in the final

section.

2 Travel in the modified Flying-V warehouse

In the previous section we used the terms “Flying-V” and “modified Flying-V” to suggest a

difference between designs for one or multiple P&D points, but in the remaining sections we

drop the term “modified,” for ease of exposition.

2.1 Assumptions

As in Gue and Meller (2009), we model the warehouse as a discrete set of picking aisles,

each containing a continuous, uniform distribution of picking activity. These assumptions

are intended to represent a random storage policy (or equivalently, the closest-open-location

policy in the case of a fully-utilized warehouse), which is common in unit-load warehouses

(see Gue and Meller, 2009). We assume travel begins with equal probability from any of n

P&D points at the bottom of the space, where n is also the number of picking aisles. That

is, we consider an extreme case in which the number of P&D points is equal to the number

of picking aisles. (We argue in the conclusions that this assumption effectively produces a

worst-case analysis with respect to expected benefit of an inserted cross aisle.) We assume

that the warehouse is symmetric about a vertical axis passing through its center.

We also assume, implicitly, a prescribed routing rule for workers (see Figure 2). For

example, assume we stand at a P&D point i in front of picking aisle i in the right half of the

warehouse. The routing rule is

• for a location in the right half of the warehouse,

– if the location is in aisle i, travel directly to it (path not shown in Figure 2).
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Figure 2: Flying-V shape — scheme of travel patterns and related picking regions.

– if the location is to the right and above the cross aisle, travel up aisle i, then along

the cross aisle, then up the destination aisle.

– if the location is to the right and just below the cross aisle (we clarify this below),

travel up aisle i, then along the cross aisle, then down the destination aisle.

– if the location is to the right and near the bottom of the aisle, travel right along

the bottom cross aisle, and then up the destination aisle.

– if the location is to the left (but still in the right half of the warehouse), travel

left along the bottom cross aisle, then up the destination aisle.

• for a location in the left half of the warehouse,

– travel along the bottom cross aisle to the center picking aisle, then follow the rules

above in “mirror” fashion.

Observe that the routing rule imposes a particular structure on the middle cross aisle,

although not its precise specification: the rule is sensible only if the middle aisle has positive

slope in the right half of the warehouse and negative in the left. This compromise is necessary

to resolve a modeling conundrum: routing of workers depends on the structure of the aisles,

and the structure of the aisles depends on the routing of workers. Ideally, we would search
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the space of aisle designs and evaluate each one by solving shortest path problems, but

we deemed this approach intractable. Instead, a defined routing rule yields a closed-form

expression for the expected distance to a location in the warehouse, which we can easily

imbed in a non-linear optimization model.

Our modeling approach follows that described in Gue and Meller (2009), although the

models we describe here are more general because we account for multiple P&D points and

more potential travel paths. Assume there are n picking aisles and the warehouse is h units

high, where a unit is “one pallet length” (about 4 feet). The distance between picking aisle

centers is a. Because we assume the cross aisle is symmetric about the center aisle, we

consider only the right half of the warehouse. We number picking aisles in the right half-

space starting from the center and ending at the rightmost aisle. Thus, i = 0, . . . ,m, where

m = (n− 1)/2. We describe the middle cross aisle with a vector ~b = {b0, b1, . . . , bm}, where

bi is the point of intersection of the middle aisle with picking aisle i. As in Gue and Meller

(2009), we assume the cross aisle consumes 2w of a picking aisle at points of intersection

with picking aisles. Note that all P&D points should be moved “down” a distance equal to

the width of half a horizontal cross aisle to facilitate travel to the left or right in the bottom

cross aisle. Because this distance is constant for all designs, we ignore it.

2.2 The model

We divide the picking space according to appropriate travel patterns (see Figure 2), and

define the following notation:

• E[Ri] is the expected distance to a location to the right of aisle i;

• E[Li] is the expected distance to a location to the left of aisle i, but no farther left

than the center picking aisle;

• E[Mi] is the expected distance to a location to the left of aisle i and beyond the center

aisle, which we call the leftmost region; and
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• E[Si] is the expected distance to a location in aisle i.

The expected distance to a random location from a randomly chosen P&D point i in the

right half of the warehouse is

E[Ci] = pRi
E[Ri] + pSi

E[Si] + pLi
E[Li] + pMi

E[Mi],

where pRi
= (m− i)/n, pSi

= 1/n, pLi
= i/n, and pMi

= m/n are the probabilities of visiting

each of the respective regions. These probabilities are valid only for the case we consider

here, in which each picking aisle has a corresponding P&D point and n = 2m + 1. An

appropriate modification is easily obtained for cases with fewer P&D points.

Due to symmetry, the total expected distance from an arbitrary P&D point is

E[C] = p0E[C0] + 2
m∑

i=1

piE[Ci], (1)

where pj = 1/n is the probability of choosing P&D point j.

The expression for E[C] requires estimated distances for each of the travel patterns in

Figure 2. Consider aisles i and r, such that i < r, and assume that a pick is being made from

P&D point i to a random location in aisle r. The worker should choose a route based on the

how far into aisle r the location is. If the location is above the cross aisle, the worker travels

straight ahead in aisle i, along the cross aisle, and then up aisle r — the upper path. If the

location is between the middle aisle and the bottom cross aisle, there are two possible routes

— along the cross aisle and down, or along the bottom aisle and up. There exists, then, a

point qir in aisle r at which the worker is indifferent between the paths if he is traveling from

P&D point i.

The middle aisle has length dj =
√

a2 + (bj − bj−1)2 between aisles j and j − 1, and

the distance between aisles i and r along the middle aisle is dir =
∑r

j=i+1 dj. The point of

indifference qir in aisle r for a worker traveling from P&D point i is determined by setting
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the two path lengths equal to one another,

(r − i)a + qir = bi + dir + br − qir

qir =
1

2

[
bi + dir + br − (r − i)a

]
.

For the picks above qir, the path along the middle aisle is preferred and for those below, the

lower path is best.

Before developing expressions for the expected distance for each travel pattern, we must

discuss and resolve an anomaly of the model. Because the middle aisle consumes 2w of each

picking aisle, we impose the constraint w ≤ br ≤ h − w. For logical reasons, we require

w ≤ qir ≤ br − w, which is to say, the point of indifference in a picking aisle must be in a

valid position within the aisle, otherwise it has no meaning. Therefore, for i < r,

qir ≤ br − w

1

2
(bi + dir + br − (r − i)a) ≤ br − w

dir − (br − bi) ≤ (r − i)a− 2w
r∑

j=i+1

√
a2 + (bj − bj−1)2 − (br − bi) ≤ (r − i)a− 2w.

Adjacent aisles are especially sensitive to this constraint. In this case,

√
a2 + (bj − bj−1)2 − (bj − bj−1) ≤ a− 2w,

which simplifies to

bj − bj−1 ≥
2w(a− w)

a− 2w
.

This inequality effectively imposes a lower bound on the slope of consecutive cross aisles

segments. It tends to be tight when h is small compared to the warehouse width A = na. In

extreme cases, the constraint produces a straight V-shaped middle aisle with the rightmost
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bi’s either being very close to, or reaching h − w. If the latter occurs; i.e., br = h − w and

r < m, all aisles with indices greater than r do not have a cross aisle.

It is important to note that these constraints are not physical, but rather artifacts of

the model. If the constraint is removed, a cross aisle with a very low slope could cause our

expression for E[Ri] to become negative. To do away with the need for such a constraint, we

define qir = min(qir, br−w), which ensures that a point of indifference is in a valid position.

The expected distance to a location to the right of P&D point i is

E[Ri] =
m∑

r=i+1

1

(m− i)(h− 2w)

[∫ qir

0

[(r − i)a + x]dx

+

∫ br−w

qir

[bi + dir + br − x]dx +

∫ h

br+w

[bi + dir + x− br]dx

]
=

m∑
r=i+1

1

(m− i)(h− 2w)

[
qir

[
(r − i)a +

qir

2

]
+ (br − w − qir)

[
bi + dir

+
1

2
(br + w − qir)

]
+ (h− br − w)

[
bi + dir +

1

2
(h− br + w)

]]
.

The three main terms in this expression are, for each picking aisle to the right, the

expected distance to a pick using the bottom cross aisle and up the picking aisle, using the

diagonal aisle and down, and using the diagonal aisle and up, respectively. For a location to

the left but not beyond the center aisle,

E[Li] =
i−1∑
l=0

1

i(h− 2w)

[∫ h

0

[(i− l)a + x]dx −
∫ bl+w

bl−w

[(i− l)a + x]dx

]

=
i−1∑
l=0

1

i(h− 2w)

[
a(i− l)(h− 2w) +

h2

2
− 2blw

]
.

Terms in this expression reflect, for each potential picking aisle, the distance to that aisle

along the bottom aisle and the expected distance in the picking aisle. For a location in the
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leftmost region,

E[Mi] =
m∑

`=1

1

m(h− 2w)

[∫ q0`

0

[
ia + `a + x

]
dx

+

∫ b`−w

q0`

[
ia + b0 + d0` + b` − x

]
dx

+

∫ h

b`+w

[
ia + b0 + d0` + x− b`

]
dx

]

=
m∑

`=1

1

m(h− 2w)

[
q0`

[
(i + `)a +

q0`

2

]
+ (b` − w − q0`)

[
ia + b0 + d0`

+
1

2
(b` + w − q0`)

]
+ (h− b` − w)

[
ia + b0 + d0` +

1

2
(h− b` + w)

]]
.

Terms in this expression are analogous to those for a pick to the right of the P&D point,

except we must add the distance to the center aisle. The expected travel distance to a pick

in the same aisle as the P&D point is

E[Si] =
1

(h− 2w)

[∫ h

0

xdx −
∫ bi+w

bi−w

xdx

]
=

1

(h− 2w)

[
h2

2
− 2biw

]
.

Finally, for the central picking aisle: Because expected travel distances to the right and

left from the central aisle are the same, we can simplify the expression to:

E[C0] = 2pR0E[R0] + pS0E[S0],
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where pR0 = m/n and p0 = 1/n are the probabilities of picking to the right of aisle 0 and

the probability of picking in aisle 0.

E[R0] =
m∑

r=1

1

m(h− 2w)

[∫ q0r

0

[ra + x]dx

+

∫ br−w

q0r

[b0 + d0r + br − x]dx +

∫ h

br+w

[b0 + d0r + x− br]dx

]
=

m∑
r=1

1

m(h− 2w)

[
q0r(ra +

q0r

2
)

+(br − w − q0r)

[
b0 + d0r +

1

2
(br + w − q0r)

]
+(h− br − w)

[
b0 + d0r +

1

2
(h− br + w)

]]
.

And,

E[S0] =
1

(h− 2w)

[∫ h

0

xdx −
∫ b0+w

b0−w

xdx

]
=

1

(h− 2w)

[
h2

2
− 2b0w

]
.

To summarize, we have developed expected distance expressions for each travel path from

a P&D point to a destination location, and we have combined them into a single, non-linear

expected distance expression, (1). The optimization problem is to

Minimize E[C]

subject to

w ≤ bi ≤ h− w, i = 0, . . . ,m.

The model solves in reasonable time with any of the search routines in Mathematica.

Solutions among those routines were essentially the same. Although it is possible that we

are stuck in a local minimum for any of our solutions, we believe that solutions we describe
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Figure 3: An example Flying-V design, with solid squares indicating bi values.

here are optimal (or near-optimal) for three reasons: (1) The main structure of these solutions

(a Flying-V) has been consistent among dozens of problems we have solved. (2) Solutions are

relatively insensitive to changes in the exact shape of the cross aisle. For example, solutions

that force the cross aisle not to have any curve at all (unlike the slight curve seen in Figure 3),

are within 0.1 percent of the solution produced by our model. This is a mild argument for

smoothness of the search space. (3) Solutions are in keeping with intuition.

The Flying-V design depicted in Figure 3 looks very much like solutions for the single

P&D point cases shown in Gue and Meller (2009). The strong similarity between this design

and the optimal design for a single P&D point (they are almost indistinguishable) suggests

that the Flying-V is robust with respect to the number of P&D points. The middle aisle

in Figure 3 has b0 = w, which is as low as possible. This is beneficial for all travel paths

that begin on one side of the warehouse and end on the other; the routing rule in this

case states that, once at the center aisle, the middle aisle may be used. The middle aisle

extends monotonically into the right and left halves of the warehouse, as we would expect.

It is important to note, however, that this characteristic of our solutions is not required by

constraint, but rather is a manifestation of the routing rules for travel. The model is free to
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Figure 4: Travel patterns in the Inverted-V middle aisle.

choose any shape for the middle cross aisle.

Before we present further results for the Flying-V warehouse, we cover a model for ware-

houses with a middle cross aisle of a different shape.

3 Travel in the Inverted-V warehouse

Assumptions for this model are the same as for the Flying-V, and the development follows

along similar lines. However, as Figure 4 illustrates, the travel paths are more numerous and

slightly more complicated.

The routing rules that produce an Inverted-V middle aisle are:

• for a location in the right half of the warehouse,

– if the location is in aisle i, travel directly to it.

– if the location is to the left (but still in the right half of the warehouse) and above

the cross aisle, travel up aisle i, then along the cross aisle, then up the destination

aisle.

– if the location is to the left and just below the cross aisle, travel up aisle i, then

along the cross aisle, then down the destination aisle.
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– if the location is to the left and near the bottom of the aisle, travel left along the

bottom cross aisle, and then up the destination aisle.

– if the location is to the right, travel right along the bottom cross aisle, then up

the destination aisle.

• for a location in the left half of the warehouse,

– if the location is just below the top of the warehouse, travel up aisle i, left along

the middle aisle to aisle 0, then to the top of the warehouse in aisle 0, then left

along the top cross aisle to the destination aisle and down (see Figure 4).

– if the location is just above the bottom of the warehouse, travel left along the

bottom aisle to the destination aisle and up.

– if the location is near the middle of the destination aisle, choose the shorter of

two paths:

∗ Travel up aisle i, left along the middle aisle to the destination aisle, then up

or down as appropriate.

∗ Travel left along the bottom aisle, then up the destination aisle.

These routing rules produce a middle aisle in the shape of an Inverted-V, although such a

shape is not imposed by constraints in the model.

For a random P&D point in the right half of the warehouse, travel to the right in an

Inverted-V design is equivalent to travel to the left in the Flying-V. The same holds for travel

to the left (no farther than the central aisle) in the Inverted-V design and travel to the right

in a Flying-V.

The expected distance expression for P&D point i is

E[Ci] = pRi
E[Ri] + pSi

E[Si] + pLi
E[Li] + pMi

E[Mi].

Development of the first three components is as before; the fourth (for the leftmost re-

gion) is slightly more complicated. Development of the four components is presented in the
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Figure 5: An example Inverted-V design, with solid squares indicating bi values in the
solution.

Appendix.

Again, our goal is to

Minimize E[C]

subject to

w ≤ bi ≤ h− w, i = 0, . . . ,m.

As before, the model solves in reasonable time with any of the search routines in Math-

ematica, and solutions were almost the same among those routines. An example solution

is provided in Figure 5.

The middle aisle in an Inverted-V design has a rounded shape to facilitate travel “over

the top” and into the other side of the warehouse, but also to facilitate the travel patterns

in Figure 8. Solutions for all configurations we considered had bm = w, which brings the

middle aisle as close as possible to the bottom of the warehouse near the ends.
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4 A comparison of designs

Our objective is to discover whether or not alternative aisle designs can reduce expected

distances in a unit-load warehouse with multiple P&D points, and if so, by how much.

We solved our models for a variety of configurations, with parameters

• number of aisles n = 11–39 in increments of 4,

• width of the cross aisle w = 1–3 in increments of 0.5, and

• height of the warehouse h = 50–125 in increments of 25.

By way of reminder, units for w, h, and a are “pallets lengths,” which is about 4 feet. We

set a = 5, which implies that the distance between aisle centers is 20 feet, and therefore a

picking aisle is 12 feet wide. Figure 6 shows the results for several sets of parameters.

For the Flying-V design we see that the performance (relative to a traditional warehouse)

generally improves as the warehouse gets larger and for warehouses with more aisles. And, as

expected, larger values of w degrade the possible improvement. In general, for warehouses of

15 or more aisles and h of 100 or more, the potential savings is approximately 3–6%. These

potential savings do not compare favorably with those for warehouses with a single P&D

point (see Gue and Meller, 2009), where we can expect the benefit of a Flying-V to be more

than 10 percent in many cases.

For the Inverted-V design, the improvement over traditional designs improves with h and

the number of aisles and decreases as w increases. However, the Inverted-V design does not

offer any savings for warehouses less than about 15 aisles wide, and the savings are very

small in any case. For the cases we tested, the Inverted-V design offered less than 2 percent

savings.

The assumption that travel can begin or end at every point at the bottom of the warehouse

is a kind of worst case problem because aisles must necessarily accommodate flows in many

different directions. To illustrate this point, we changed the concentration of flows in a 31-

aisle warehouse from the most concentrated case (a single P&D point) to the most diffused

17



15 20 25 30 35

1

2

3

4

h = 50, w = 1.5

L-shape

Flying-V

15 20 25 30 35

1

2

3

4

5

h = 75, w = 1.5

15 20 25 30 35

1
2
3
4
5
6

h = 100, w = 1.5

15 20 25 30 35

1
2
3
4
5
6

h = 125, w = 1.5

15 20 25 30 35

0.5
1.0
1.5
2.0
2.5
3.0
3.5

h = 50, w = 2

15 20 25 30 35

1

2

3

4

h = 75, w = 2

15 20 25 30 35

1

2

3

4

5

h = 100, w = 2

15 20 25 30 35

1
2
3
4
5
6

h = 125, w = 2

Figure 6: Percent savings for the Flying-V and Inverted-V designs as a function of the
number of aisles over a traditional design with orthogonal travel. h is the length of the
warehouse (in pallets); 2w is approximately the width of the cross aisle.
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Figure 7: Benefit of an improved middle aisle for warehouses having different numbers of
P&D points.

case (a P&D point at the end of every picking aisle). Figure 7 illustrates the improvement

achieved by a Flying-V cross aisle as the number of doors increases. The most concentrated

case has one door receiving flows, and there is approximately a 10 percent savings for the

improved design, in keeping with the results of Gue and Meller (2009). As the number of

doors receiving flow increases, the expected benefit decreases steadily, showing that more

diffused flows along the bottom of the warehouse diminish the power of the middle aisle to

facilitate efficient travel. Therefore, the results we have presented in this paper are a sort of

worst-case scenario for flows.

5 Conclusions

Prior work in warehouse aisle design is limited by the assumption that there is a single P&D

point. The contribution of our paper to the literature is the development of aisle designs,

and models to configure those designs, that consider multiple P&D points.
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We have proposed two new aisle designs, the modified Flying-V cross aisle and the

Inverted-V cross aisle, with the goal of facilitating flow between multiple P&D points and

locations in a unit-load warehouse. We investigated the performance of these designs for

a variety of warehouse parameters (always assuming a positive width for the inserted cross

aisle). We compared their performance individually to a traditional unit-load warehouse

with no inserted cross aisle. This comparison illustrates that with the maximum number of

P&D points,

A modified Flying-V cross aisle can reduce travel 3–6% for reasonably-sized ware-

houses, when compared with a traditional warehouse.

These results might seem disappointing when compared to the single P&D point case,

where we can expect the benefit of a Flying-V to be more than 10 percent in many cases

(see Gue and Meller, 2009). However, our testing indicated that the case of one P&D point

for each aisle represents a worst case in terms of performance, because relative performance

decreases as the number of P&D points increases. Therefore,

The doors most often used should be those near the center, thus concentrating

the material flows and improving the benefit of a Flying-V aisle. When there

are fewer P&D points than doors, the P&D points should be located as close as

possible to the center of the warehouse.

The comparable result for the Inverted-V design is less than 1% for reasonably-sized

warehouses, and negative improvement for some cases. We observed that,

With the maximum number of P&D points, the modified Flying-V cross aisle

warehouse always outperforms a comparable Inverted-V cross aisle.

The decision of whether to implement a modified Flying-V cross aisle design centers on

the tradeoff between productivity improvements and a lower storage density (due to the

inserted cross aisle). The model and results in this paper will be helpful in establishing the

former — at least to the extent that travel distances affect productivity — whereas we can
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estimate the latter by noting that the modified Flying-V warehouse will be larger by a factor

up to (h + 2w)/h (e.g., when h = 100 pallet widths and w = 1.5 pallet widths, the modified

Flying-V warehouse is approximately 3% larger). There are some applications for which the

inserted cross aisle could be implemented as a tunnel; in which case, the area increase is

much smaller. Experience also suggests that the turns in a modified Flying-V warehouse

can be executed at higher speed, which will positively affect productivity (Meller and Gue,

2009).

We conclude by noting that many more aisle designs are possible, especially those that

do not require parallel picking aisles. Future research should investigate such designs, in

addition to the impact on travel distances of non-random storage, task-interleaving, and the

best placement of P&D points.
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Appendix (Intended as an Online Supplement)

Recall that the expected distance expression for P&D point i is

E[Ci] = pRi
E[Ri] + pSi

E[Si] + pLi
E[Li] + pMi

E[Mi].

Development of the first three components is as before; the fourth (for the leftmost region)

is slightly more complicated. First,

E[Ri] =
m∑

r=i+1

1

(m− i)(h− 2w)

[∫ h

0

[(r − i)a + x]dx −
∫ br+w

br−w

[(r − i)a + x]dx

=
m∑

r=i+1

1

(m− i)(h− 2w)

[
a(r − i)(h− 2w) +

h2

2
− 2brw

]
,

E[Si] =
1

(h− 2w)

[∫ h

0

xdx −
∫ bi+w

bi−w

xdx

]
=

1

(h− 2w)

[
h2

2
− 2biw

]
,

E[Li] =
i−1∑
l=0

1

i(h− 2w)

[∫ qil

0

[(i− l)a + x]dx +

∫ bl−w

qil

[bi + dli + bl − x]dx

+

∫ h

bl+w

[bi + dli + x− bl]dx

]
=

i−1∑
l=0

1

i(h− 2w)

[
qil((i− l)a +

qil

2
)

+(bl − w − qil)

[
bi + dil +

1

2
(bl + w − qil)

]
+(h− bl − w)

[
bi + dil +

1

2
(h− bl + w)

]]
.

When traveling from the right half of the warehouse into the left, sometimes it is best

to use the patterns in Figure 4 and sometimes the more complicated paths in Figure 8.
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Figure 8: A rarely used and complicated travel pattern in the Inverted-V design. For some
aisle combinations this is preferred to the travel patterns in Figure 4.

Locations at the top and bottom of a destination aisle are always visited in the same way,

but for locations in the middle, we have a choice.

For a P&D point i in the right and picking aisle ` in the left half-warehouse, we introduce

L(i, `) = (i + `)a + b` and U(i, `) = bi + di0 + d`0, which are the lower and upper shortest

paths from the P&D point i to the intersection point b`. If U(i, `) < L(i, `), it is cheaper

to access b` from above, via the Inverted-V cross aisle. In this situation, it is better to use

the cross aisle, which would produce the pattern given in Figure 8. This pattern creates two

points of indifference in aisle `, one above and one below b`. This holds for every aisle ` such

that U(i, `) < L(i, `) and 1 ≤ ` < i. It is easy to see that for ` ≥ i, the lower path is best.

For the point of indifference qL
i` below the cross aisle:

(` + i)a + qL
i` = bi + di0 + d`0 + b` − qL

i`

qL
i` =

1

2

[
bi + di0 + d`0 + b` − (` + i)a

]
.
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and for the point of indifference qU
i` above the cross aisle,

d`0 + qU
i` − b` = h− b0 + `a + h− qU

i`l

qU
i` =

1

2

[
b` + 2h− b0 + `a− d`0

]
.

As before, we must avoid imposing a bound for the slope of the Inverted-V cross aisle by

defining,

qL
i` = max(w, min (qL

i`, b` − w))

qU
i` = max(b` + w, min(qU

i` , h− w)).

If L(i, x) < U(i, x), the lower path is best and we have only one point of indifference above

the cross aisle:

(i + `)a + q`
i` = bi + di0 + h− b0 + `a + h− q`

i`

q`
i` =

1

2

[
bi + di0 + 2h− b0 − ia

]
.

Again, we must avoid the potential for “negative distances,” so we define:

q`
i` = max(b` + w, min (q`

i`, h− w)).

For a fixed P&D point i, we choose the cheaper of the two travel patterns for every aisle

` in the left half-space. Expected travel distance for the travel pattern with two points of
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indifference (Figure 8) is,

Mi,`(ab) =
1

m(h− 2w)

[∫ qL
i`

0

[(i + `)a + x]dx +

∫ b`−w

qL
i`

[bi + di0 + d`0 + b` − x]dx

+

∫ qU
i`

b`+w

[bi + di0 + d`0 + x− b`]dx

+

∫ h

qU
i`

[bi + di0 + h− b0 + `a + h− x]dx

]
=

1

m(h− 2w)

[
qL

i`((i + `)a +
qL

i`

2
) + (b` − w − qL

i`)

[
bi + di0 + d`0

+
1

2
(b` + w − qL

i`)

]
+(qU

i` − b` − w)

[
bi + di0 + d`0 +

1

2
(qU

i` − b` + w)

]
+(h− qU

i` )

[
bi + di0 + 2h− b0 + `a− 1

2
(h + qU

i` )

]]
.

For the travel pattern with a single point of indifference (Figure 4),

Mi,`(bel) =
1

m(h− 2w)

[∫ b`−w

0

[
(i + `)a + x

]
dx +

∫ q`
i`

b`+w

[
(i + `)a + x

]
dx

+

∫ h

q`
i`

[
bi + di0 + h− b0 + `a + h− x

]
dx

]

=
1

m(h− 2w)

[
(i + `)a(b` − w) +

(b` − w)2

2

+(q`
i` − b` − w)

[
(i + `)a +

1

2
(q`

i` + b` + w)

]
+(h− q`

i`)

[
bi + di0 + 2h− b0 + `a− 1

2
(h + q`

i`)

]]
.

The expected distance from P&D point i to a location in the leftmost region is

E[Mi] =
m∑

`=1

min (Mi,`(bel), Mi,`(ab)).
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The expected distance from the center P&D point is

E[C0] = 2pR0E[R0] + pS0E[S0].

where,

E[R0] =
m∑

r=1

1

m(h− 2w)

[∫ h

0

(ra + x)dx−
∫ br+w

br−w

(ra + x)dx

]

=
m∑

r=1

1

m(h− 2w)

[
ar(h− 2w) +

h2

2
+ 2brw

]

E[S0] =
1

h− 2w

[∫ h

0

xdx−
∫ b0+w

b0−w

xdx

]
=

1

h− 2w

[
h2

2
− 2b0w

]
.
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