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Abstract

We develop an approximation model for the state-dependent sojourn time
distribution of customers or orders in a multi-stage, multi-server queueing
system, when interarrival and service times can take on general distributions.
The model can be used to make probabilistic statements about the departure
time of a customer or order, given the number and location of customers
currently in process or waiting, and these probabilities can be recomputed
while waiting at any point during the sojourn time. The model uses phase-
type distributions and a new method to estimate the remaining processing
times of customers in service when the sojourn time distribution is computed.

Keywords: Queueing, Markov processes, phase-type distributions, sojourn
time distributions

1. Motivation

Service systems often make explicit statements—perceived by customers,
effectively, as promises—about how long a wait will be. For example, call
centers may claim, “expected wait time is 3 minutes,” or an internet book-
seller may promise, “order in the next 2 hours and receive it tomorrow.” To
make such promises, a firm must estimate both processing times and waiting
times, whose sum is the sojourn time. In stochastic environments, the result
must be a distribution, from which service estimates or promises are made.
When offered or called upon in real time, these service promises must also
consider the number of customers already in the system, that is, the system
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state. In the examples above, the state of the system is defined by other
callers or orders already in queue.

The relevance of state-dependent waiting times for call centers is well-
recognized (Whitt, 1999). These problems are typically modeled with a
single, multi-server queue, but many service systems require a multi-stage
representation. For example, the motivation for our research is a large distri-
bution center, which operates as a series of multi-server queues corresponding
to the picking, packing, and shipping operations. To make real-time deci-
sions about workforce allocation, we sought the probability that a particular
order would complete its processing before the last truck departed for the day
(Kim, 2009). This probability can only be computed with a state-dependent
sojourn time distribution.

Models such as the one we develop here seem all the more important
when one considers that simulation is an ineffective means of developing
these distributions. For general service times (which we assume), the state
of the system must include not only queue lengths and numbers of busy
servers, but also the remaining processing time for each order being served.
To our knowledge, there is no accepted method of simulating the “remaining
times” of orders already in process. The brute force simulation method,
which we describe and use below, observes the state of the system upon each
arrival and records results only for orders encountering the system state of
interest. Such simulations can take hours or even days to generate a single
distribution. We believe our models offer a better approach.

Research on sojourn time distributions can roughly be classified into two
categories: steady state waiting time and state-dependent waiting time. A
steady state sojourn time distribution only has meaning when a customer or
order arrives to the system, whereas a state-dependent sojourn time distribu-
tion can be computed at any time while in the system, not just upon arrival.
Our interest in this paper is a state-dependent sojourn time distribution,
which includes the waiting time and service time distributions.

There is a rich literature on steady state sojourn time distributions. Neuts
(1981) and Luh and Zheng (2005) showed how to generate the sojourn time
distribution of a single stage queue with a single server using a matrix ge-
ometric method. Sengupta (1989) developed a “continuous analog” of the
matrix-geometric method. Asmussen and O’Cinneide (1998) and Asmussen
and Møller (2001) extended Sengupta’s analysis of the GI/PH/1 queue to the
multi-server case. They showed the steady state waiting time distribution in
a GI/PH/c queue is also phase-type.
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Shanthikumar and Sumita (1988) and You et al. (2002) suggested an ap-
proximation model for queueing networks of single servers. Shanthikumar
and Sumita (1988) approximated the sojourn time distribution as a phase-
type distribution based on the “service index,” and You et al. (2002) intro-
duced an approximation using the convolution property of the phase-type
distribution. Steady state sojourn time distributions for queueing networks
of multiple servers was studied by Mandelbaum et al. (1998) and Gue and
Kim (2009). Mandelbaum et al. (1998) addressed diffusion approximations
for M/M/c queueing networks, and Gue and Kim (2009) developed an ap-
proximation model for G/G/c queueing networks based on the characteristics
of the phase-type distribution.

A state-dependent sojourn time distribution provides managers or system
controllers with the ability to post real-time information to customers or to
take real-time actions to improve system performance. Call centers are one
of the most active research areas on this subject. Given the system state at
the time of estimation, Whitt (1999) proposed a method of estimating the
waiting time distribution of each customer in a single stage G/G/c queue.
He estimated the waiting time distribution using a Normal approximation
for a large call center with many servers. Nakibly (2002) suggested an ap-
proximation model of the waiting time distribution in a multi-server queue
by calculating iteratively the waiting time of each customer in the queue. To
increase customer satisfaction by announcing expected waiting time to a cus-
tomer, Jouini and Dallery (2006) investigated the waiting time distribution
for multiclass, multi-server call centers with exponential arrival and service
times.

Our work differs from existing research in important ways. First, for
single-stage systems, our method is effective for small and medium sized sys-
tems; whereas the method of Whitt (1999) is effective only for large systems.
Second, existing research addresses only single stage systems, whereas we
extend our methodology to address multi-stage systems and even simple,
acyclic networks.

We focus on the sojourn time instead of waiting time to extend our inter-
est to manufacturing and warehousing systems. Our approximation model is
based on the phase-type distribution. In contrast to the steady state sojourn
time distribution, we do not need to consider the arrival process for a state-
dependent sojourn time distribution, because it does not affect the sojourn
time distribution of a order in the system. Throughout this paper, we allow
processing times to follow general distributions, and we model them with
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phase type distributions. We also assume that all servers in a workstation
are homogeneous; that is, they have the same processing time distributions.

The rest of this paper is organized as follows: in Section 2, we intro-
duce characteristics of the phase-type distribution, which is the fundamental
concept behind our models. Also, we introduce the method of fitting a gen-
eral distribution as a corresponding phase-type distribution. In Section 3,
we introduce an approximation model of the sojourn time distribution for a
multi-server queueing system with exponential service times. In Section 4,
we present an approximation model for general service times and apply it to
some numerical examples. In Section 5, we compare an approximation model
for queueing networks with simulation; in Section 6, we discuss the results
and implications of our work.

2. Preliminaries

2.1. Phase-type distributions

The phase-type distribution is composed of a finite sum or a finite mixture
of exponentially distributed components, or a combination of both. When
the interarrival time and service time follow the exponential distribution,
we call it a Markovian queueing system and solve the system using Markov
processes. In addition, if we approximate the interarrival time and service
time as a corresponding phase-type distribution, we can analyze the system
using the Markov property.

The continuous phase-type distribution used in this paper was defined by
Neuts (1981). The following relationships are developed in that book and
are repeated here for clarity of exposition. A phase-type distribution is the
distribution of time to reach absorbing state m+1 in a finite Markov process
having infinitesimal generator

Q =

[
T T0

0 0

]
,

where 0 is a row vector of zeros, the m ×m matrix T satisfies Tii < 0, for
1 ≤ i ≤ m, and Tij ≥ 0, for i 6= j. The equation Te + T0= 0 is satisfied,
where 0 is a column vector of zeros and e is a column vector of ones. The
initial probability vector of Q is (α, αm+1), with αe + αm+1 = 1. The pair
(α,T) specifies the phase-type representation.
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Given initial probability vector α, the cumulative distribution function
of the time to reach state m+ 1 is

F (x) = 1−αeTxe. (1)

The density function is

f(x) = αeTxT0 = αeTx(−T)e,

and the moments are defined by

E(Xk) = (−1)kk!αT−ke. (2)

Neuts (1981) also introduced the convolution property of the phase-type
distribution. If H(·) and I(·) are both continuous phase-type distributions
with representations (α,T) and (β,S) of orders m and n, then the convo-
lution of two distributions, H ∗ I(·) is also a phase-type distribution with
representation (γ,P) and the infinitesimal generator and the initial proba-
bility vector are given by

P =

[
T T0β
0 S

]
,

γ = [α, αm+1β].

2.2. Fitting distribution

In order to analyze our system as a Markovian queueing system, we ap-
proximate a general service time as a corresponding phase-type distribution.
Mapping general distributions to phase-type distributions has been studied
by Sauer and Chandy (1975), Marie (1980), Tijms (1994), You et al. (2002)
and Osogami and Harchol-Balter (2003). Phase-type distributions comprise
a dense set in the set of all distributions, and so can be made to approximate
a general distribution with any degree of accuracy. We follow the relatively
simple matching two moments method of Tijms (1994) and You et al. (2002),
for reasons of simplicity and computational time. As we show below, this
fitting method provides good results for the systems we investigate; other
methods could be used.

We fit a general distribution as one of three phase-type distributions:
Erlang-k, balanced hyper-exponential, and the exponential distribution, based
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on the squared coefficient of variation C2 = σ2/µ2. If C2 < 1, a general dis-
tribution is approximated as an Erlang distribution, Erlang (k, λ), of order
k. The density function is given by

f(x) = λk
xk−1

(k − 1)!
e−λx, x ≥ 0.

The shape parameter k is computed by
⌈

1
C2

⌉
and λ = k/E[X], where E[X]

is the mean of the general distribution.
If C2 > 1, a general distribution is converted to a balanced hyper-

exponential distribution, HE2 . The density function of HE2 is described
by

f(x) = p1λ1e
−λ1x + p2λ2e

−λ2x, x ≥ 0,

where p1 = 1
2

(
1 +

√
C2−1
C2+1

)
, p2 = 1−p1, λ1 = 2p1/E[X] and λ2 = 2p2/E[X].

If C2 = 1, we use the exponential distribution, with density function,

f(x) = λe−λx, x ≥ 0,

where λ = 1/E[X].

3. Exponential service times

In this section, we assume all servers in a workstation are identical and
have the same exponential distribution of processing times. Whitt (1999)
suggested that the waiting time distribution in such a system follows an
Erlang-(k + 1) distribution with mean 1/cµ when the system has c servers
and there are k customers ahead. We are interested in the complete sojourn
time distribution, so we must add processing time to the waiting time.

3.1. An exact model

The state dependent sojourn time distribution does not rely on the inter-
arrival time distribution because the waiting time distribution is determined
only by the number of servers, the number of orders ahead and the service
rate. Also, we do not need to model the remaining service time for expo-
nential service, due to the memoryless property. Every order arriving to the
system has Erlang waiting time in queue and is processed in exponential
service time.
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We compute the sojourn time distribution of an order in the system based
on the convolution property of the phase-type distribution, introduced by
Neuts (1981). Because service times are exponential (for now), both the
waiting time and service time distributions are phase-type. Therefore the
sojourn time distribution is also phase-type, and the model is exact.

We construct the initial probability vector and the infinitesimal gener-
ator of the system based on this result. The initial probability vector and
the infinitesimal generator are composed of the waiting time representation
(α,W) and service time representation (β,S). The sizes of the infinitesimal
generator W and the initial probability vector α are determined by the num-
ber of orders ahead in the queue. For example, if there are k orders ahead,
the size of the infinitesimal generator and initial probability vector of waiting
time are given by W(k+1)×(k+1) and α1×(k+1):

W =


−cµ cµ 0 · · · 0 0

0 −cµ cµ · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −cµ cµ
0 0 0 · · · 0 −cµ

 ,

α = [1, 0, · · · , 0].

Thus, the phase-type representation of the sojourn time distribution is de-
termined by

K =

[
W W0β
0 S

]
,

γ = [1, 0, · · · , 0].

We can generate the cumulative distribution function (CDF) of the sys-
tem based on the phase-type representation (γ,K)

F (t) = P (T ≤ t) = 1− γeKte, (t ≥ 0).

The probability density function (PDF) is given by

f(t) = γeKtK0 = γeKt(−K)e, (t ≥ 0).
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4. General service times

In addition to the exponential service time case, Whitt (1999) developed
an approximation model for general service times in single stage systems.
For a large number of servers c, a Normal approximation can be used. The
mean waiting time is given by

E[W ] ≈ k + 1

µc

(
1 +

1

2c

)
,

and the full distribution of waiting time is described by a Normal approxi-
mation. Whitt states that his approximation is appropriate only when the
number of servers is substantially larger than the number of customers ahead,
as is commonly the case in call centers.

In contrast to Whitt (1999), we approximate the sojourn time distribution
using phase-type distributions. The procedure is similar to the exponential
service times case, except for considering the remaining service times of the
orders in service.

The procedure is:

1. Approximate the service time distribution as a corresponding phase-
type representation (β,S) based on the C2

s .

2. Approximate the first waiting time distribution as a corresponding
phase-type representation (α1,W1) based on a Markov process we de-
fine below.

3. Approximate the second waiting time distribution as a corresponding
phase-type representation (α2,W2) based on the Markov process and
the first initial probability vector α1.

4. Approximate successive waiting time distributions as corresponding
phase-type representations (αi,Wi), i ≥ 3, according to the same pro-
cedure.

5. Generate the initial probability vector and infinitesimal generator (γ,K)
for the system using the convolution property of the phase-type distri-
bution.

6. Solve F (t) = P (T ≤ t) = 1− γeKte, (t ≥ 0) to obtain the CDF of the
sojourn time distribution.

To analyze a system using continuous time Markov chains, we need to
approximate a general service time distribution as a phase-type distribution.
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We generate the phase-type representation of service time (β,S) using the
method in Section 2.2. The number of phases and the transition rate are
determined by the squared coefficient of variation (SCV) and the number of
servers.

If a server is idle, an arriving order enters service immediately, and we do
not need to consider waiting time to calculate the sojourn time—the sojourn
time is equal to the service time. If there is no idle server and the arriving
order finds k orders ahead in the queue, its sojourn time consists of three
times — the waiting time for the first order to depart, the waiting time for
the next k orders to depart, and the service time. In this condition, if one of
the servers finishes its order, the order can go one step forward and then all
servers are working immediately. So the order waits k+1 “sub-waiting times”
to enter service and departs the system after receiving service. Hereafter, we
refer to a “sub-waiting time” as an epoch.

4.1. Approximating the first epoch

Each epoch is the time an arriving order spends in queue until one of the
servers finishes its order. That is, an epoch starts when all servers are busy
(all-busy) and ends when one of the servers finishes its order (partial-busy).

To estimate the distribution of each epoch, we introduce a continuous
time Markov process {N(t); t ≥ 0} with some absorbing states to model the
all-busy period, where the system-state of the Markov chain is the number
of servers in each phase.

Asmussen and O’Cinneide (1998) showed that the waiting time distribu-
tion of an epoch in a GI/PH/c queue is phase-type, and that the number of
phases is (

m+ c− 1
c

)
,

where c is the number of servers and m is the number of phases of each server.
Suppose there are c homogeneous servers, each with m phases, and an

order finds k orders ahead in the queue. There are m + 1 server-states, and
each server can be in one of those states. An order arrives to find k orders
ahead and servers in one of m states (none are idle). We describe the system-
state as an m-vector of server-states. The ith element in the vector records
the number of servers in state i.
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1 2 3

Server 1:
Server 2:

System-state: (2, 0)

Server-state

(a)

Server 1:
Server 2:

System-state: (1, 0)(b)

Absorbing state

Figure 1: System-state and server-state.

Example 1. An order arrives to a system with 2 homogeneous servers and
finds 3 orders ahead in the queue. We wish to estimate the sojourn time
distribution of this order given E[Ts] = 2 and C2

s = 0.8.
First, we approximate the general service time distribution as a corre-

sponding distribution using the fitting distribution method in Section 2.2. We

approximate with an Erlang(2, 1) because m =
⌈

1
C2

s

⌉
= 2 and µ = m

E[Ts]
= 1.

Figure 1 shows two examples of the relationship between server-state and
system-state: (a) shows two servers working in the first server-state, and this
is system-state (2, 0); (b) shows server 1 working in the first server-state and
server 2 has finished its order, and this is system-state (1, 0). There are 5
system-states: (2, 0), (1, 1), (0, 2), (1, 0), (0, 1). We call (2, 0), (1, 1), (0,
2) all-busy states and (1, 0), (0, 1) partial-busy states. The time between
partial-busy states is an epoch, except for the first epoch which begins upon
arrival to the system and therefore to an all-busy state (otherwise a server
was empty and the order entered service immediately).

We are interested in the distribution of the first epoch, which is the time
until the process enters the first partial-busy state, given the process started
from an all-busy state. The infinitesimal generator W1 of the first epoch
includes state changes directly among all-busy states. In Example 1,

W1 =

 −2 2 0
0 −2 1
0 0 −2

 .
We also need to approximate the initial probability vector α1 of the first

epoch, for which we use the stationary distribution of the all-busy states,
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because an arriving order finds the system in one of these all-busy states.
In our approximation model, if the system reaches a partial-busy state, the
system-state is changed immediately to an all-busy state because there is
another order in the queue. Thus we should consider two kinds of state
changes for α1. One is state changes from the all-busy states to all-busy
states, and the other is state changes from all-busy states to partial-busy
states instantaneously followed by state changes from partial-busy states to
all-busy states. If we sequence the states such that the all-busy states precede
the partial-busy states, the former state changes have infinitesimal generator
W1, which has zero value for the lower triangle below the diagonal. The
latter state changes have transition rate matrix H, which has the same size
as W1 and has zero value for the upper triangle and diagonal. The transition
rate matrix Q = W1 + H includes all possible state changes when an order
arrives at a certain position in queue. In Example 1, H and Q are

H =

 0 0 0
1 0 0
0 2 0

 ,Q =

 −2 2 0
1 −2 1
0 2 −2

 .
Now we can compute α1 using the transition rate matrix Q. The sta-

tionary distribution is given by

πQ = 0, πe = 1,

where e is a column vector of ones. That this is an approximation for α1

and not an exact expression can be see by considering a simple M/E2/1
system, for which the probability that an order is in the second stage of
service is less than half, whereas our method would give one half. However,
for more interesting systems with multiple servers and more orders in queue,
the approximation is more accurate.

In Example 1, the initial probability vector α1 of the all-busy states in
the first epoch is

α1 = π = (π20, π11, π02) = (0.25, 0.5, 0.25).

4.2. Approximating the remaining epochs

The infinitesimal generators Wk of the following epochs are the same
as the infinitesimal generator of the first epoch, because the state changes
from the all-busy to partial-busy states are the same. However, the initial
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probability vectors αk of the following epochs are not the same. Rather,
they must be derived successively from the initial probability in the previ-
ous epoch, because these affect which partial-busy state was reached. As we
mentioned above, if the system reaches a partial-busy state, the system state
is changed immediately to an all-busy state. This means the initial prob-
ability vectors αk of the all-busy states in epoch k come directly from the
stationary distribution βk−1 of the partial-busy states in the former epoch
k − 1.

Now we introduce a method to compute the stationary distribution βk−1

of partial-busy states in epoch k − 1. Every epoch starts from one of the
all-busy states and ends in one of the partial-busy states, so if we know the
stationary distribution of the all-busy states and the absorbing probability
from the all-busy states to partial-busy states, then the stationary probability
of the partial-busy state j

βj =
∑

all−busy i

πiuij,

where πi is stationary probability of all-busy state i and uij is the absorbing
probability from all-busy state i to partial-busy state j. From the Chapman-
Kolmogorov equations,

uij =
∑

all−busy h

Pihuhj.

where Pih is the transition probability from all-busy state i to all-busy state
h.

Finally, we get the elements of αk directly from the corresponding ele-
ments in βk−1. Because the dimensions of αk and βk−1 are different, we
must append to βk−1 a sufficient number of zeros to reach the dimension of
αk. In Example 3.1, the initial probability vector α2 of the all-busy states
in the second epoch is

α2 = (β10, β01, 0) = (0.375, 0.625, 0).

Note that elements of the initial probability vector αk converge to the
same value as the epoch k increases.
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4.3. Approximating the sojourn time distribution of the system

The sojourn time of an order with c + k orders ahead in the system
has k + 1 different sub-waiting times and one service time. So, the state-
dependent sojourn time distribution is given by the convolution of these
k + 2 distributions.

We construct the initial probability vector and the infinitesimal generator
of the queueing system based on the work of Neuts (1981). The infinitesimal
generator is composed of the waiting time representation (αk,W) of each
order’s waiting time in the system and the service time representation (β,S).
If there are k orders ahead in the queue, the infinitesimal generator and initial
probability vector are given by

K =


W1 W0

1α2 0 · · · 0 0
0 W2 W0

2α3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · Wk+1 W0

k+1αk+2

0 0 0 · · · 0 S

 ,
γ = [1, 0, · · · , 0].

The CDF and PDF are given by

F (t) = P (T ≤ t) = 1− γeKte, (t ≥ 0),

f(t) = γeKtK0 = γeKt(−K)e, (t ≥ 0).

4.4. Normal Approximation Model

One drawback of our approximation model is computation time for very
large systems. For example, models with up to 30 servers and fewer than, say,
20 orders ahead, generally solve within 1 minute; problems with 50 servers
can take 3 minutes; problems with 100 servers can take 8.5 hours and prob-
lems with 200 servers, more than a day. To address these larger problems, we
introduce a second approximation called the Normal Approximation Model
(NAM).

The NAM uses the same phase-type representation of waiting and pro-
cessing times as the approximation we have already developed, except that
the CDF and PDF are not calculated with the matrix exponential expres-
sion in Equation 1. Instead, we assume the final distribution is Normally
distributed, and that we can compute the required first and second moments
with Equation 2, which requires only a matrix power computation.
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4.5. Numerical results

To test the approximation model from Section 4.3, we consider two factors—
the number of servers c and the number of orders ahead k. We use

• c ={ 2, 3, 5, 10, 20, 50, 100, 200}, and

• k ={5, 10, 20} for c ≤ 100, {40, 60, 80} for c = 200.

We test possible combinations of these two factors under the same ca-
pacity (mean processing time E[T ] = 5 and C2 = 0.5). For the comparison,
we add the mean processing time E[T ] = 5 hours to the waiting time of
Whitt’s results because he computes only mean waiting time. In the simu-
lation model, we used the Gamma distribution for the service time because
it is often an appropriate model for task completion time (Law and Kelton,
2000).

Table 1 shows the mean sojourn time results from the approximation
model, Whitt’s model and the simulation model. As expected, Whitt’s model
shows good results when the number of servers is high (in this case, greater
than 30). With a few exceptions, the approximation model appears to per-
form well over a wide range of problem instances. We should note however,
that the largest problems in this table are very difficult to compute using
our approximation model. For example, a problem with 100 servers and 20
orders ahead takes 8.3 hours, and 200 server problems take about 1 day. We
record computation time using a 2.4 GHz Intel Core 2 Duo processer, and
most of the problems except for those mentioned above are computed in a
few seconds. Therefore, for single-stage systems, one might view Whitt’s
method and ours as complements—ours performs well for small and medium
sized systems, his for large.

Figures 2–4 compare the PDF and CDF of the approximation model with
the simulation model under different numbers of servers and orders ahead in
the queue. We use the Anderson-Darling (A-D) test to check the agreement
between distributions. As shown in Table 2, all test statistics are significant
with α = 5%.

4.6. Testing the Normal Approximation Model

Table 3 shows the percent differences of percentiles between the NAM
and the simulation when c = 2, 20 and 100. (We could not compare these
results with Whitt, because he models only the waiting time.) We see that
differences at the 95th percentile are greater than 5 percent for cases k <
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Table 1: A comparison of mean sojourn times for general service times.

Servers 2 3 5
Orders ahead 5 10 20 5 10 20 5 10 20
Whitt 18.75 34.38 65.63 11.67 21.39 40.83 11.60 17.10 28.10
% difference -4.95 6.51 15.65 -20.99 -7.06 5.21 5.23 6.43 8.27
Approximation 19.38 31.88 56.87 14.71 23.20 40.17 10.97 16.24 26.82
% difference -1.79 -1.24 0.21 -0.39 0.79 3.51 -0.53 1.06 3.34
Simulation 19.73 32.27 56.75 14.77 23.01 38.81 11.02 16.07 25.95

Servers 10 20 30
Orders ahead 5 10 20 5 10 20 5 10 20
Whitt 8.15 10.78 16.03 6.54 7.82 10.38 6.02 6.86 8.56
% difference 2.25 2.81 3.42 0.81 1.20 1.49 0.68 0.93 1.32
Approximation 8.02 10.79 16.45 6.48 7.81 10.67 5.99 6.84 8.63
% difference 0.62 2.99 6.19 -0.04 1.04 4.26 0.15 0.53 2.19
Simulation 7.96 10.48 15.43 6.46 7.70 10.26 5.97 6.79 8.43

Servers 50 100 200
Orders ahead 5 10 20 5 10 20 40 60 80
Whitt 5.61 6.11 7.12 5.30 5.55 6.06 6.03 6.53 7.03
% difference 0.61 0.52 0.82 0.21 0.26 0.27 0.16 0.22 0.25
Approximation 5.59 6.09 7.12 5.30 5.55 6.04 6.02 6.51 7.02
% difference 0.39 0.21 0.73 0.19 0.19 0.09 -0.01 -0.01 0.05
Simulation 5.56 5.96 7.06 5.28 5.53 6.03 5.99 6.49 6.99
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20 40 60 80 100
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Probability CDF
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Figure 2: Comparison of the PDF and CDF of the approximation model and the simulation
model (2 servers and 20 orders ahead).

15



5 10 15 20 25 30
Time

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Density PDF

5 10 15 20 25 30
Time

0.2

0.4

0.6

0.8

1
Probability CDF

Approximation
Simulation

Figure 3: Comparison of the PDF and CDF of the approximation model and the simulation
model (50 servers and 10 orders ahead).
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Figure 4: Comparison of the PDF and CDF of the approximation model and the simulation
model (100 servers and 5 orders ahead).

Table 2: Anderson-Darling tests for general service time of the single stage queue.

Servers Orders ahead A-D α = 5% Decision
% difference
90th 95th

2 20 1.755
2.492

accept 0.92 1.78
50 10 1.828 accept 1.56 0.51
100 5 2.327 accept 0.22 0.27
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Table 3: The percent differences of percentiles between NAM and Simulation for the single
stage queue.

Servers 2 20 100
Orders ahead 5 10 20 5 10 20 5 10 20
90th -1.69 0.46 1.48 -1.47 -0.53 2.53 -9.23 -1.89 -1.76
95th -2.73 0.24 2.34 -7.33 -5.84 -2.00 -14.06 -8.16 -7.74

c, where k is the number of orders ahead and there are c servers, which
suggests that the model does not perform well under these conditions. The
explanation has two parts: First, the Normal approximation will perform
well, in general, when (1) successive waiting times have the same distribution,
and (2) there are many of them. Second, successive waiting times in our case
are not identically distributed because of the initial set of remaining times
(Section 4.2). However, successive waiting time distributions do converge
as memory of the initial remaining times is “lost,” which is reflected by
successive initial probability vectors αk converging to the same set of values.
Systems with fewer servers converge faster, so, in general, the NAM performs
better when k � c.

5. Multi-Stage Systems

5.1. Approximation model

We extend our work to serial lines and small acyclic queueing networks
based on the single stage approximation model. We apply the single-stage
model from Section 4 for the stages successively, each time updating the con-
dition of the stage being computed. For example, consider a simple, 3-station
serial line, and suppose an order is in queue at the first workstation. The
order will experience three sojourn times, one at each queue and workstation,
and the total sojourn time is their convolution. After each of the first two
sojourn times, the status of the remaining queues changes, so we must esti-
mate how many orders are in these queues when the order of interest arrives.
After each sojourn time, the remaining queues change in two ways: orders
arrive from the upstream workstation, and some orders are completed and
depart. During each stage, then, we must estimate how many orders arrive
to and depart from each remaining workstation (Figure 5).
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Figure 5: State-dependent queueing network model. Black discs represent workers; squares
represent orders.

For the first workstation, we simply apply the single-stage model, giving
us a sojourn time distribution and its mean E[S1]. Now, let qij be the es-
timated queue length of workstation j after the ith sojourn time. Waiting
time at the second workstation is based on the starting queue length q0

2, plus
arriving orders, minus departing orders. We assume that during E[S1], all
q0
1 + c1 orders in front of the order of interest arrive to workstation 2. If

all servers were busy during this time, then we would estimate the number
processed at workstation 2 by c2 × E[S1]/E[T2], where E[T2] is the mean
processing time of the second workstation. However, it is possible that some
servers could go idle during this time, so we correct for this by using a floor
function, bc2 × E[S1]/E[T2]c. The expected number of orders ahead upon
arrival to the second workstation becomes,

q1
2 = max(0, q0

2 + (q0
1 + c1)− bc2 × E[S1]/E[T2]c).

During each stage of calculation, we must revise the number in queue at
remaining workstations. For the third and following workstations, this leads
to

qij = max

(
0, qi−1

j +

⌊
cj−1 ×

E[Si]

E[Tj−1]

⌋
−
⌊
cj ×

E[Si]

E[Tj]

⌋)
, for i = 1, . . . , j−2.
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1 2 3

Figure 6: A serial line with 3 stations.

where E[Si] is the mean sojourn time of workstation i and E[Tj] is the mean
processing time of workstation j.

The final revision (j − 1) for workstation j is

qj−1
j = max

(
0, qj−2

j + qj−2
j−1 + cj−1 −

⌊
cj ×

E[Sj−1]

E[Tj]

⌋)
.

These approximations assume heavy traffic and are far from exact. How-
ever, they are sufficient if the number of stages is not too high, as we are
about to show.

For large serial systems, an alternative approach is to modify the NAM
by “collapsing” the system into a single-stage queue. If we wish to know
the state-dependent sojourn time distribution of an order in front of the first
station in a serial line with 3 stations, we assume our system is a single stage
queue with c3 servers, and the number of orders ahead is q1 +c1 +q2 +c2 +q3,
assuming all servers are busy. Now we can generate the state-dependent
sojourn time distribution using the single stage model directly.

5.2. Numerical results

We apply the approximation model to a serial line with 3 stations (Figure
6) and an acyclic queueing network with 4 stations (Figure 7). The black
disc in each station represents an occupied server, and in the case of the
acyclic queueing network, an order departing from the first station selects its
follow on station with probability p. We test state-dependent sojourn time
distributions for both systems when the order is located in front of the first
station. We also test the acyclic queueing network when the order is located
in front of the second station. The system information is described in Table
4.

We compare the mean sojourn time and the distribution among the ap-
proximation, the NAM, and the simulation model under different numbers

19



0.67p =

0.33p =

1

2

3

4

Figure 7: An acyclic queueing network with 4 stations. Black discs represent workers.

Table 4: The system information of the serial line and acyclic queueing network.
Serial line E[T ] C2 Servers Utilization(ρ)

Interarrival 1.05 0.7
Station 1 5 0.8 5 0.95
Station 2 3 0.8 3 0.95
Station 3 2 0.8 2 0.95

Acyclic queueing network E[T ] C2 Servers Utilization(ρ)
Interarrival 1.05 0.7
Station 1 5 0.8 5 0.95
Station 2 4.47 0.8 3 0.95
Station 3 9.09 0.8 3 0.95
Station 4 2 0.8 2 0.95
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Table 5: The comparison of the mean sojourn time of the serial line.

Orders in queues Approximation % difference NAM % difference Simulation
11-12-13 47.98 0.11 46.75 -2.46 47.93
6-12-13 42.70 -0.12 41.75 -2.34 42.75
16-12-13 53.27 0.50 51.75 -2.37 53.01
11-20-13 55.13 -1.62 54.75 -2.30 56.04
17-12-17 58.33 1.15 56.75 -1.60 57.67
7-20-4 41.90 -2.28 41.75 -2.64 42.88

31-22-29 93.32 0.30 92.75 -0.31 93.04

of orders in each station. We assume service times and interarrival times in
the simulation model are Gamma distributed. To estimate a sojourn time
distribution in simulation for problems given in Table 5, we collect sojourn
times only for orders seeing the required state conditions upon arrival. When
an order arrives to the system, we check the number in queue at each work-
station. If this vector of values corresponds to the state of interest problem
condition, we record the sojourn time; otherwise we do not. This “brute
force” method alleviates the problem of estimating upon arrival the remain-
ing times of orders in process. However, because occurrences of a particular
state are rare, these simulations can take a very long time to run. For exam-
ple, the first problem in Table 5 (11-12-13) takes 2 days for 50 runs, with 40
million (simulated) hours in each run.

Table 5 shows the results. In the table, the column “Orders in queues”
represents the number of orders in the respective queues. The approximation
model is extremely close to the simulation results for nearly every case. The
NAM is acceptable, but not quite as good. We believe the NAM underesti-
mates the mean (notice the negative differences) because it does not account
for potential starving situations, in which the server has completed a job,
but the next job has not yet arrived.

Figures 8 and 9 compare the PDF and CDF of the approximation model
with the simulation model under different orders ahead in the queue. Again,
the Anderson-Darling (A-D) tests reveal that there is no significant difference
between the simulation and approximation results. However distributions
generated by the NAM do not exactly fit the simulation (Table 7). Most
of the percent differences are greater than 5%, except when the numbers of
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Figure 8: Comparison of the PDF and CDF of the serial line (11-12-13).
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Figure 9: Comparison of the PDF and CDF of the serial line (6-12-13).

orders at each station are 31, 22 and 29. This suggests that the NAM works
well only when the total orders ahead is significantly greater than the number
of servers at the last station, because of reduced chances of starving.

Table 8 shows the mean sojourn time of the approximation model and
simulation for an acyclic queueing network. We test two cases: the order is in
front of the first station and in front of the second station. The approximation
model appears to work well for both cases.

Figures 10–13 compare the PDF and CDF of the approximation model
with the simulation model under different locations of the order of interest.
Notice the unusual distribution in Figure 11. This is caused by the mixture
of the distributions of the two potential serial line paths (path 1: 1-2-4 and
path 2: 1-3-4) because an arriving order can take either path to depart the
system. If the difference between the two mean sojourn times is large (E[S]
of the two paths are 44.44 and 75.06 hours), the sojourn time distribution has

22



Table 6: Anderson-Darling tests for the serial line.

Orders in queues A-D α = 5% Decision
% difference
90th 95th

11-12-13 2.22

2.492

accept -3.08 -4.13
6-12-13 1.79 accept -1.61 -2.52
16-12-13 0.86 accept -2.29 -2.95
17-12-17 1.85 accept -0.84 -2.14

Table 7: The percent differences of percentiles between the NAM and simulation for the
serial line.

Orders in queues Total orders ahead 90th 95th

11-12-13 44 -5.24 -7.83
6-12-13 39 -6.64 -9.24
16-12-13 49 -5.28 -7.16
17-12-17 54 -4.59 -6.82
31-22-29 90 -2.43 -3.98

Table 8: The comparison of the mean sojourn time of the acyclic queueing network.

Order location Orders in queues Approximation % difference Simulation

The first station

11-12-8-13 60.87 1.86% 59.77
6-4-16-13 55.59 0.76% 55.18

16-12-15-13 72.26 0.84% 71.66
11-20-12-13 73.10 0.73% 72.57
17-12-7-17 70.54 2.78% 68.64

The second
station

11-12-8-13 39.56 -1.28% 40.07
6-8-12-13 33.48 -1.76% 34.08

16-12-15-13 39.56 -1.81% 40.29
11-20-12-13 51.72 -0.53% 51.99
17-12-7-17 43.56 2.25% 42.60
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Figure 10: Comparison of the PDF and CDF of the acyclic queueing network (The first
station, 11-12-8-13).
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Figure 11: Comparison of the PDF and CDF of the acyclic queueing network (The first
station, 6-4-16-13).

two peaks, as in Figure 11. Notice that our model reflects this because we
estimate the sojourn time distribution for a random order by approximating
the CDF of all possible “serial lines” (paths in the network) and mixing
those CDFs according to the probabilities of taking those paths. We use
the Anderson-Darling (A-D) test to check the agreement between the two
distributions. As shown in Table 9, all test statistics are significant with
α = 5%.

6. Conclusions

We have developed an approximation model for state-dependent sojourn
time distributions of queueing systems with multiple servers, using the char-
acteristics of phase-type distributions. Our model handles serial and acyclic
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Figure 12: Comparison of the PDF and CDF of the acyclic queueing network (The second
station, 11-12-8-13).
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Figure 13: Comparison of the PDF and CDF of the acyclic queueing network (The second
station, 6-8-12-13).
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Table 9: Anderson-Darling tests for the acyclic queueing network.

Order location Orders in queues A-D α = 5% Decision
% difference
90th 95th

The first station

11-12-8-13 2.01

2.492

accept -2.53 -4.40
6-4-16-13 1.65 accept 1.75 -0.39

16-12-15-13 1.21 accept -0.91 -1.75
11-20-12-13 2.31 accept -3.72 -2.99
17-12-7-17 1.74 accept -1.98 -3.63

The second
station

11-12-8-13 2.01

2.492

accept -3.50 -4.15
6-8-12-13 2.36 accept -4.85 -6.61

16-12-15-13 2.46 accept -3.89 -5.43
11-20-12-13 1.35 accept -2.25 -2.65
17-12-7-17 1.02 accept -0.81 -0.98

queueing networks and performs well over a wide range of problem sizes.
When the number of servers is more than about 200, the model is less ef-
fective due to the computation time required for the matrix exponential
calculation.

The approximation allows us to estimate the probability that a customer
or order will complete its service in less than a specific time, which can
be used to offer service promises or to make real-time adjustments to the
system in order to effect a better outcome. For example, an internet-based
order fulfillment system might make service promises in real time, based on
the state of the delivery system. Kim (2009) describes a dynamic worker
allocation scheme for warehouses based on the probability that particular
orders will finish before a deadline.
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