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Abstract

We develop discrete time models for the throughput time distribution of or-
ders arriving to a one-block warehouse. The models accommodate single- or
multi-line orders, and we show how to use them to determine the optimal
batch size, given a desired probability of on-time order fulfillment. Experi-
ments suggest that the optimal batch size is slightly higher than one would
choose if minimizing average throughput time.
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1. Thinking in Distributions

In the context of an order-fulfillment warehouse, service performance is
determined mostly by whether or not orders are ready “on time,” which often
means “as soon as possible.” In a system with random arrivals and random
processing times, the throughput time takes on random times, and so un-
derstanding service performance requires one to compute the distribution of
throughput times. Having the full distribution and not just the mean makes
it possible to know, for example, what percentage of orders are processed in
fewer than 3 hours, or what promised turnaround time will be met 95% of
the time.
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To understand the motivation for our study, consider a distributor of
industrial supplies whom we have visited. The central warehouse serves many
retail outlets, but it also operates a will-call service, with which it serves
local contractors. Contractors call throughout the day with orders, which are
picked by one or two workers specifically dedicated to this service. Customers
receive faster service than if they waited on a delivery truck, which must
batch orders to provide transportation economies. The warehouse would like
to know, as a matter of policy, how long it should tell customers to wait
before arriving to pick up their orders from the will-call service. Answering
this question requires knowledge of the distribution of throughput times.

We develop discrete time queueing models to calculate the throughput
time distribution of a customer order in a one-block warehouse system. We
adapt approaches originally developed for the evaluation of Asynchronous
Transfer Mode (ATM) networks (see Ackroyd, 1980; Tran-Gia, 1996; Hiib-
ner and Tran-Gia, 1995; Hasslinger and Klein, 1999) in order to describe
material and information flows in a material handling system. The advan-
tage of discrete time queueing analysis is that, unlike in most continuous
time models, performance measures such as the waiting time distribution of
an order in queue can be calculated efficiently under general distribution as-
sumptions (see Grassmann and Jain, 1989). Schleyer (2007), Schleyer (2010),
and Schleyer and Furmans (2007) develop a framework for stochastic mod-
eling of material and information flows in discrete time. Our work differs
from these in that we describe models specifically for picking processes in a
warehouse.

The existing warehousing literature has proposed queueing approaches
in continuous time for analytical modeling. If input parameters such as
the service time (e.g., picking time in order picking systems) are generally
distributed, only mean values for system performance have been produced
(Chew and Tang, 1999; Jewkes et al., 2004; Le-Duc and de Koster, 2007;
Van Nieuwenhuyse and de Koster, 2009). Previous research on the estima-
tion of expected travel time in one-block warehouses has been carried out
by Kunder and Gudehus (1975), Hall (1993), Jarvis and McDowell (1991),
Chew and Tang (1999), and Roodbergen and Vis (2006). Unfortunately,
mean values for performance do not answer the service-oriented questions
we are considering. Petersen (2000) and Petersen et al. (2004) determine
the probability of on-time order fulfillment using simulation. Their goal is
to choose warehouse operating parameters (batch sizes, wave length, etc.)
with respect to a defined level of service. By contrast, the models we present



below are analytical and fast, which permits extensive “what-if” analysis.
Our models also produce throughput time distributions, rather than point
estimates of performance for particular configurations.

In this paper, we analyze the batching of order lines before picking is
performed, a problem known in the literature as the order batching problem
(OBP). Many authors have modeled the OBP with a known set of orders
(e.g., Rosenwein, 1996; de Koster et al., 1999; Gademann and van de Velde,
2005). Three publications have considered the stochastic nature of the OBP
in warehouses. Chew and Tang (1999) determine the average throughput
time for the OBP in a 1-block warehouse using an E,,/G/c queueing system,
where n denotes the batch size. They make the conservative assumption that
the average throughput time of an arbitrary order is equal to the throughput
time of the first order in a batch, which has the longest batching time. Below,
we model order batching time explicitly. Le-Duc and de Koster (2007) model
the OBP as an M/G"/1 queueing system and derive the average through-
put time in a 2-block warehouse. Le-Duc and de Koster (2007) assume the
arrival of single-line orders. Van Nieuwenhuyse and de Koster (2009) extend
the model of Le-Duc and de Koster (2007) to study the average customer
order throughput time with time window batching. The arrival of multi-line
orders is allowed. They assume that the arrival process of customer orders is
Poisson. We present in this paper models for the calculation of the through-
put time distribution for both multi-line and single-line orders. Our research
is not restricted to the assumption that the arrival process is Poisson. We
require only a stationary arrival stream of orders, which might represent
arrivals during the heavy traffic period of a system.

Below, we explain the objective of our work and describe the model,
including assumptions and variables. In Section 3 we build a model for
single-line orders, and show that the optimal batch size for a high service
level is slightly larger than the optimal batch size for mean throughput time.
In Section 4 we extend our models to accommodate orders with multiple
lines and demonstrate the same result for this case. We offer conclusions in
Section 5.

2. Objective, Model Description and Assumptions

The objective of this paper is to present a new methodology to ana-
lyze order fulfillment processes in a warehouse. Our focus is on the service
performance of a warehouse, by which we mean the probability of on-time
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Figure 1: Queueing model of the picking system.

fulfillment of a costumer order, rather than on its throughput capacity. We
believe ours is the first research that uses discrete time queues to model
picking processes in a warehouse. We illustrate our techniques with a basic
warehouse model in which a single order picker traveling through a one-block
warehouse retrieves items using the well known S-shape routing strategy.

Consider a single-worker picking operation for a one-block, rectangular
warehouse with M aisles in which items are randomly stored. The overall
process is illustrated in Figure 1: Arriving orders are gathered into batches
of size n before entry into a single-server queue, from which an order picker
processes the batches (in our case, in a picking tour). The stochastic model
for this picking system is comprised of two subsystems. The first describes
the batching process, in which a batch of n order lines is formed. The second
describes the picking operation itself, where a batch of n order lines is pro-
cessed in one picking tour. The overall throughput time of a customer order
consists of three components: (1) the waiting time due to batching W, (2)
the waiting time of the batch when the picker is busy W), and (3) the service
time to pick a batch of orders by the picker T%.

The service time to pick a batch, T}, consists of the travel time through
the warehouse, T}, and the time for retrieving a batch of n order lines from
the shelves, T,. The complete picking operation can be modeled using a
G/G/1 queue in the discrete time domain. Both the arrival and the service
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process are described by independent and identically distributed (iid) random
variables.

The batch size processed by the picker is n. We assume that the distribu-
tion of retrieval times, 7T,., can be derived from empirical data, and that an
order line can consist of one or more items. More specifically, the retrieval
time distribution reflects time spent stopped at a picking location, which
comprises multiple storage locations for products (both sides of the aisle and
potentially multiple levels of storage).

More difficult is the derivation of the travel time, T;, which depends on
the pick locations in the warehouse and on the routing method, which in our
case is the S-shape strategy. We assume that pick locations are randomly
distributed in the warehouse, which means that each pick location in the
warehouse has the same probability of being visited.

We assume a discrete time domain, which allows us to calculate the
throughout time of customer orders when interarrival and service times are
generally distributed. The length of a time unit should be short enough to
yield a reasonable approximation of continuous time, but not so short that
it causes computational difficulties. (We give examples below.)

We define the following variables:

d the (discrete) probability mass function for interarrival time,
a; probability that an interarrival time takes on i time units, i = 1,2, 3, ..., maz(a),

¢ the (discrete) probability mass function for the number of order lines in a
customer order,

y; probability that the number of order lines in a customer order is ¢, i =
1,2,3, ..., maz(y),

n batch size, the number of order lines which have to be picked in one picking
tour,

M number of aisles,
N number of pick locations per aisle,
d time units to traverse an aisle (can be a continuous value),

w time units to travel the center-to-center distance between two adjacent
aisles,



u time units to pick an order line,

wp,; probability that the waiting time of a customer order at the batching
node is ¢ time units, : = 0,1,2, ...,

wp,; probability that the waiting time of a customer order when the picker
is busy is ¢ time units, + = 0,1,2, ...,

dy; probability that the interdeparture time of formed batches from the
batching node is ¢ time units, ¢ = 0,1, 2, ...,

T, random variable describing the service time to process a batch order of
size n by the picker,

T; random variable describing the travel time through the warehouse for
picking n order lines,

T, random variable describing the time for retrieving a batch of n order lines
from the shelves,

T, random variable describing the picking sojourn time,
T. random variable describing the total throughput time,
00.05(X) 95th percentile of a random variable X,

® convolution operator: The distribution of the sum of two independent
nonnegative random variables X and Y, is called the convolution of
their distributions and can be computed by Z = X ® Y such that
zi = ;o %;Yi—j. (Variable z; is the probability that random variable
Z takes on discrete value ¢, which is the sum of j and ¢ — j. Variable
x; is the probability that random variable X takes on discrete value j,
and y;_; is the probability that random variable Y takes on discrete
value i — j.)

{#™®}; probability that the sum of m random variables, each described by
pmf Z, is ¢ time units.

Our analysis works as follows: First, we model the order picking process
in a one-block warehouse. We derive the order picker travel time 7}, which
leads to the service time to pick a batch T,. Second, we analyze the batching
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Figure 2: Warehouse with an S-shape pick route.

operation by computing the waiting time of an arbitrary order for batching,
Wy, and the interdeparture time of formed batches, D,. Given D, and T,
the waiting time for picking, W), can be determined using the discrete time
G/G/1 queueing model by Grassmann and Jain (1989) (see Appendix 6). We
then calculate the distribution of the total throughput time, T, by convolving
the distributions of W, W,, and T, assuming the independence of these
random variables.

3. Analysis

3.1. Travel Time Analysis

Consider the warehouse layout depicted in Figure 2. The warehouse con-
sists of a block of M aisles in which items are stored. The order picker
traverses the warehouse using the S-shape strategy, which is quite efficient
and, due to its simplicity, widely used in practice (Roodbergen et al., 2008).
In an S-shape routing strategy, any aisle containing at least one item is tra-
versed in its entirety. An exception is made if the number of aisles to be
visited is odd, in which case the picker turns after he or she has picked the
final item (see Figure 2).

We assume the order picker travels at constant speed, so travel time is
directly proportional to the travel distance. The travel time consists of two
components, the time spent within aisles and the time spent crossing be-
tween aisles. Both times depend on the number of aisles visited, which can
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Figure 3: Farthest pick in the last aisle

be determined with a combinatorial approach given by Kunder and Gude-
hus (1975) or by solving the classical occupancy problem (Chew and Tang,
1999; Le-Duc and de Koster, 2007). In the latter problem, a fixed number
of indistinguishable balls are randomly placed in a given number of distin-
guishable urns (see Johnson and Kotz, 1977). Treating the urns as aisles and
the balls as order lines to be picked, the distribution of the number of aisles
to be visited in a picking tour can be determined using Johnson and Kotz’s
formula,

Px) = %(M> i(—ni(f?) (z—i)" a=1,..,min(n, M). (1)

Z
1=0

If x is even, the within-aisle travel time is d - z. If x is odd, the picker must
traverse x —1 entire aisles. When the picker walks into the last aisle and picks
the last order line, he or she must turn, in which case we must determine the
distance from the center line of the front aisle to the location of the last item
to be picked (see Figure 2). This distance depends on the number of picks, y,
which must be performed in the last aisle. Under the condition that z aisles
have to be visited, the probability that y picks are located in the last aisle is

n—ao 1 y—1 1 n—xz—(y—1)
P(y|lz) = (y—l) (E) (1—;) , y=1l.,n—x+1 (2

Equation 2 can be explained as follows: There must be at least one pick in
each of the x aisles to be visited. At first, let us allocate exactly one pick to
each of these x aisles. One of them is the last aisle to be visited, and there
are n — x picks remaining to be allocated to these x aisles. When one aisle is



chosen out of z aisles, the last aisle is chosen with probability 1/x and one
of the others with probability 1 — 1/z. After the remaining n — x picks have
been allocated, there can be maximum y = n — x + 1 picks in the last aisle.
Equation 2 follows from basic probability.

In each aisle there are N potential pick locations, each representing mul-
tiple storage locations on either side of the aisle. In the case the picker has
to turn, the distance from the center line of the front aisle to the farthest
pick in the aisle is a function of y, the number of picks in the final aisle. Let
P(z|y) be the probability that the farthest pick is at the zth location, given
there are y picks in the aisle (see Figure 3 for an illustration). For example, if
y = 1, the picker travels to only one location in the aisle and P(z|y) = 1/N,
for all locations z. If y > 1, the y — 1 pick locations which are located closer
to the center line must be chosen from the z — 1 closer located pick locations.
To compute P(z]y) in this case, we divide the number of ways to distribute
y — 1 picks among these z — 1 potential locations by the total number of ways
to distribute y picks in N locations,

(1)
P(z|y):zT), z=1,..,N. (3)
y
The probability that the number of aisles to be visited is even is easily cal-
culated by

min(n,M

)
Peyen = Z P(.CL’) (4>
=0, even
The probability that the number of aisles to be visited is odd and therefore
that the picker has to turn is P,qg = 1 — P.yen.-

To derive the cross aisles travel time, we must determine the distance
from the I/O-point to the farthest aisle to be visited (see Figure 2). We
number the aisles from ¢ = 1 for the closest aisle to ¢ = M for the farthest
aisle from the I/O-point. P({|z) is the probability that ¢ is the farthest aisle
given that x aisles have to be visited. P(¢|x) can be derived in a manner
analogous to Equation 3. We get

(o)

-1

P(l|x) = ~5r5, {=ux,..
(%)

Because we model in the discrete time domain, we must define the time

scale. Omne time unit could be a second, some seconds, one minute, etc.,

, M. (5)



depending on the application. For most warehouse applications, a time unit
of 5-20 seconds should provide sufficient resolution and still make the model
computationally tractable. The results of the model are sensitive to selection
of the time scale, of course: more precise results can be had with smaller time
units, at the cost of longer computational times.

It takes d time units to traverse an entire aisle. If the picker has to turn
at the zth location in an aisle, the travel time within this aisle is 2dz/N time
units. Given z (z is odd), ¢, and z, the travel time is 2w(¢ — 1) + d(z —
1) 4+ 2dz/N time units. Because we require a discrete value for time, we use
notation [2w(f — 1) + d(x — 1) + 2dz/N] to indicate the nearest integer to
2w(l — 1)+ d(z — 1) + 2dz/N. For the overall travel time it follows that

P(T; =|2w(f — 1) + dx]|x even) =
min(n,M) M

>, D PP

r=2, even f=zx
P(T; =|2w(f — 1) +d(zx—1)+ QdZ/N—‘ |z odd) =

min(n,M) M n—z+1

ZZZwawwy

r=1, odd =2 y=1 =z=1

even

odd

Using Bayes’ formula we get the probability that the travel time is ¢ time
units by

P(T, = i) = P(T; = i| even) P.ye, + P(T; = 1| odd) P,yq. (7)

This approach for the travel time distribution is exact in the discrete time
domain, and the computation time is fast: a problem of size M = 20, N = 50,
and n = 20 requires just 0.07 seconds on an AMD 2 GHz processor. In the
cases N = 100 and N = 150, run times are 0.33 and 1.3 seconds.

The picking service time, T}, is the sum of T} (travel time) and 7T, (time
for retrieving items). 7T, can be derived directly from order history data
(Petersen, 2000). For example, if after a picker has reached a storage location,
it takes x time units to retrieve a single item and place it in the picking cart,
each additional item at the same storage location might require y < x time
units. The distribution of Ty is given by the convolution of the distributions
of Ty and T,.
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3.2. Analysis of the Batching Process for Single-Line Orders

As illustrated in Figure 1, there is a batching process before the picking
process begins. The batching process requires that we determine the number
pick list =

formed batch
batching size n of n order lines

'S

000 000
O=+0=—>00 =000 ————p 000
p, 000 000 [©0O

order lines batching

Figure 4: Batching of single-line orders.

of order lines in a picking tour. If too few order lines are picked in each picking
tour, system capacity is reduced due to workers spending so much of their
time traveling. Reduced capacity could lead to excessive queueing times for
orders or, in the worst case, to an infeasible system (the so-called saturation
effect, see Karmarkar et al., 1985; Van Nieuwenhuyse and de Koster, 2009).
If order batches are too large, then orders could spend excessive time in
queue waiting for other orders to complete the batch, also leading to long
queues and high throughput times. This effect is called the batching effect
by Karmarkar et al. (1985) and Van Nieuwenhuyse and de Koster (2009).
An optimal solution to the order batching problem makes the best tradeoff:
sufficient orders to make picking tours efficient, without causing arriving
orders to wait too long to form batches.

3.3. Distribution of Waiting Time for Batches

To begin, we derive the waiting time distribution of an arbitrary customer
order at the batching node in a picking system when single-line orders arrive.
We represent interarrival times with a probability mass function @, in which
an element a; corresponds to the probability that the interarrival time is ¢
time units.

Suppose an arriving order line at the batching node encounters 0 < x < n
waiting order lines. If x < n — 1, the order line must wait for the missing
n—x—1 order lines. If x = n—1, the order line does not have to wait, because
its arrival completes the batch, which may be transferred immediately to the
picking station. The probability that an order line encounters x order lines

11



Interarrival Time Distribution
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Figure 5: Interarrival time distribution.

upon arrival is 1/n. Thus, the waiting time distribution at the batching node

Wb 1s
n—1 - n—1q . .
{% SoTHar Ry i1, .

Wy, =

)

if i = 0.

S =

Interdeparture times from the batching process are, by definition, inter-
arrival times of formed batches to the picking station that follows it. We
represent the interdeparture times of formed batches with a discrete ran-
dom variable D,, having probability mass function d in which an element dp,;
represents the probability that an interdeparture time is ¢ time units.

For a batch size of n, we get dp; easily by the n-fold convolution of @,
because n arrivals are required to fill the departing batch. Therefore, we
obtain

dp; = {a"®},. 9)

To summarize, we have built discrete time distributions for the waiting
time due to batching, for the waiting time due to picker utilization, and for
the picking service time. The throughput time distribution is their convolu-
tion: T, = Wy, @ W, ® Ts.

3.4. Performance Analysis

Consider an interarrival time pmf @ = {0.0,0.120, 0.150,0.125, 0.090, 0.075,
0.050, 0.045, 0.040, 0.040, 0.035, 0.035, 0.030, 0.030, 0.025, 0.025, 0.025, 0.020,
0.020,0.010,0.010}, where the first element is ag (see Figure 5). The ware-
house has M = 20 aisles, each of which has N = 50 pallet locations. The
time to walk an entire aisle (one-way) is d = 3; the distance between aisle
centers is w = 1; the time to make a single retrieval is a fixed u = 0.25; and
the batch size n = 12. If the retrieval time for a batch is non-integer, we
round to the nearest integer. In this case, for example, if n had been 11,
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we would round 11(0.25) = 3.75 to 4. Figure 6 shows the throughput time
distribution of a customer order.

This distribution gives us the probability that a customer order can be
processed within a given time. In the example, an order request can be
processed within 158 time units with probability 95 percent.

The spikes in the left part of the distribution correspond to orders for
which travel time makes up the large majority of the throughput time. The
irregularity of the travel time distribution is an artifact of the S-shape routing
protocol and the nature of discrete time models, which in this case makes it
more likely that throughput time is an even number. For higher values of
throughput time, waiting time due to batch forming and due to high picker
utilization tend to overwhelm the travel time, and the curve is more smooth.

Throughput Time Distribution in 1-Block Warehouse
(Data: n =12, M =20, N=50,d = 3, w = 1, u = 0.25)

0.016

0.012

0.008

0.004

0+
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Figure 6: Throughput time distribution for a customer order in a 1-block warehouse.

3.4.1. Comparison with simulation results

To evaluate the accuracy of the discrete time approach we compared the
analytical solutions with simulation experiments. The simulation to deter-
mine the throughput time distribution processed 2.5 million order batches.
The interarrival time distribution was assumed to be negative exponential
(a continuous distribution). For the analytical calculation we used a discrete
time interarrival time distribution with the same mean as the simulation
model (see an example in Figure 14, in Appendix 7). In real life applica-
tions the discrete time interarrival time distribution would be derived from
empirical data. The following data were used both for the simulation and
the discrete time calculation: The warehouse has 20 aisles, each having 50
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Analysis of a 1-Block Warehouse
(Data: M =30; N =25;d =3;w=1;u=0.25)
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Figure 7: Mean throughput time, mean batching time, mean waiting time, and mean
service time for an arbitrary customer order in a 1-block warehouse.

pallet locations. The speed of the picker is constant with 3 time units to
walk an entire aisle (one-way), and 1 time unit to walk the distance between
aisle centers. The time to make a single retrieval is a fixed u = 0.25. We
did several experiments with different mean interarrival times resulting in
a different system utilization (80%, 85% and 90%) and with different batch
sizes (8, 12, and 20).

Table 1 shows a comparison of the simulation and discrete time queueing
analysis. The discrete time calculation results match the simulation for most
experiments. Deviations are likely due to the differences in the used interar-
rival time distributions (continuous vs. discrete distribution; see Figure 14
in the Appendix) and the assumed independence of W,, W, and Ty in our
discrete time approach. In general, the model is more accurate when batch
size is large and utilization is high. The computing times for the discrete time
calculation take between 0.2 seconds and 3 seconds, depending on batch size
and system utilization. The simulations took 15-25 minutes per run.
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On-time Service Performance of a 1-Block Warehouse
(Data: M =30; N =25;d =3;w=1;u=0.25)

330 -

[ ]
u . A
280 A A -
[] A -
2 L A - *
c . L A = *
=1 u A - *
o L P~ [ | A 3
2 230 ® A =
< * A = *
= A *
" 8 = .
® + ° .
180 * .
. .
. *
. .
©® o
130 - T T T T T
9 11 13 15 17 19
batchsize

& avg throughputtime ¢ 90%-P m95%-P A 97.5%-P m99%-P
O indicates the minimum

Figure 8: Optimal batch size in a 1-block warehouse.

3.4.2. Batch Size Optimization

In Section 3.2 we described the order batching problem which makes the
best tradeoff between the saturation and batching effect.

Figure 7 illustrates the tradeoff in a second example, with M = 30, N =
25,d = 3,w = 1, and u = 0.25. The interarrival time distribution has pmf
a ={0.0,0.05,0.1,0.125,0.08,0.07,0.055, 0.05, 0.045, 0.04, 0.04, 0.04, 0.035,
0.035,0.03,0.03,0.025, 0.025, 0.02,0.02,0.02,0.015,0.015,0.015,0.01, 0.01}.

The batch size that minimizes E(7,) is 11 (Figure 8); whereas the batch
size that minimizes 0g95(7,) is 12. In several experiments we observed that
the optimum batch size to ensure a high service level is slightly higher than
the batch size that minimizes the mean throughput time. How can we explain
this?

Figure 9 illustrates the impact of increasing n on the sum of waiting and
service times (which we call the picking sojourn time 7,) for the same system
we consider in Figure 8. For low values of n, the difference between E(7,)
and 09.9(71), 00.95(T%), 00.975(T%), or g.99(T}) is high, and it decreases quickly
with increasing n. There are two reasons for this behavior: First, as the batch
size increases, the numbers of aisles visited per tour and therefore the picking
travel times become more stable. In fact, for large batches it is likely that
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Picking Sojourn Time in a 1-Block Warehouse
(Data: M = 30; N = 25;d = 3; w = 1; u=0.25)
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Figure 9: Optimal batch size to minimize the sojourn time of a picking system.

all aisles would visited, with the result that travel times are nearly identical
(the only difference being due potentially to partial travel of the final aisle).
Reduced variation in the picking travel times leads to lower variation of
service times, and therefore to a lower variation of the picking sojourn times.
Second, as the batch size increases, the picker utilization is lower. This leads
to less waiting before picking, and especially to less variation of it. Again,
an increasing batch size “tightens up” the distribution of the picking sojourn
times, which draws the higher percentiles of the distribution closer to the
mean (see again Figure 9). The effect of “tightening up” due to increasing
batch size gives us different optimal batch sizes for the mean picking sojourn
time and its high percentiles. For example, in Figure 9 the optimal batch
size for E(T,) = 12, and the optimal for 0g.99(7,) = 17. However, because
T, increases with n, the difference between the optimal n in a mean value
analysis and the optimal value in a service level analysis is only small if the
total throughout time of a customer order in the system is considered (see
again Figure 8).

In summary, a service level analysis leads to a slightly greater value of n
than a mean value analysis.
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Figure 10: Percentage improvement of the throughput time depending on the percentage
reduction in the travel time.

Two more observations: First, notice that at the optimal batch size,
the difference between the mean throughput time and the 99th percentile
throughput time is less than that difference for smaller and greater batch
sizes (see Figure 8). In other words, the distribution of throughput times
seems to be “tightest” at the optimal batch size, and therefore is most pre-
dictable there. Second, the graphs for the throughput time are flatter to
the right of the optimal batch size. This means that a greater than optimal
batch size has less negative impact on performance than a less than optimal
batch size.

3.5. Applications

To illustrate the potential use of discrete time models of a warehouse sys-
tem, suppose a firm is considering a new technology, such as a faster vehicle
type, that would effectively increase the speed of an order picker. What hap-
pens to the throughput time distribution? Figure 10 illustrates the percent-
age improvement of the throughput time depending on the percentage reduc-
tion in the travel time. For this example, we assume M = 20, N = 50,d =
3,w = 1,n = 12,u = 0.25, and the interarrival time distribution has pmf
a = {0.0,0.120,0.150, 0.125,0.090, 0.075, 0.050, 0.045, 0.040, 0.040, 0.035,
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Impact of Variability on the On-time System Performance of a 1-Block

Warehouse
(Data: M =10; N =40; d =4; w = 1; u=0.25)
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Figure 11: Impact of the variability of the interarrival process on throughput time.

0.035,0.030, 0.030, 0.025, 0.025, 0.025, 0.020, 0.020, 0.010, 0.010}. We increase
the speed of the order picker stepwise by 5%, which leads to a decreasing
utilization of the system. As we describe above, decreasing utilization re-
duces more the high percentiles of waiting time before picking than it does
the mean value. Therefore, at a high utilization the positive effect of travel
time reduction on the improvement of service level is considerably greater
than on the improvement of mean throughput time.

For a second illustration, we performed a numerical analysis of the mean
order throughput time F/(7,) and several percentiles of throughput time with
different levels of SCV of the interarrival time (for the data of the arrival
process, see Table 2). Figure 11 shows that percentiles such as 0¢.95(7:),
00.975(T:), and 0q.g9(T:.) vary much more strongly with increasing interarrival
time variability than does E(T.), suggesting that the consequences of in-
creasing variabilities on on-time order fulfillment will be underestimated if
decisions are based on mean values.
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4. A Model for Multi-Line Orders

In many applications, customers order several lines instead of just one.
Analysis for this case is similar to the single-line order case, except for the
batching process, which now must account for multiple lines arriving at the
same time in an order.

4.1. Batching Process

We model the number of lines in a customer order with an iid discrete
random variable Y, having probabilities y;, i = 1,...,maz(y) that an order
contains ¢ items. There are two possible policies: In the first, a batch of
exactly n lines must be formed, and so it is possible that a customer order
containing several order lines would be split between batches. For example,
if n = 20 and 18 order lines have already arrived, an arriving order with
4 lines would have to be split between two picking tours. Splitting orders
is undesireable because it requires a merging operation downstream, which
could cost labor and throughput time. Therefore, we assume that batches
must contain at least n items; our policy is to release a batch upon the first
order arrival making the batch size greater than or equal to n.

Here we investigate the interdeparture time between batches, the waiting
time of an arbitrary customer order, and the size of a formed batch for such
a policy.

4.1.1. Interdeparture Time Distribution
The interdeparture time of formed batches depends on the number of
arrivals required to fill a batch to at least n order lines. Let P(N, = k) be

the probability that the number of customer orders in a batch of at least n
isk, k=1,2,.... Then,

o)y, if k=1,
P(N, =k) = v B s (10)
{Ez‘:fﬂ{g(k 1)®}n4 Zj:,- @ Yj vk > 1.

If k£ > 1, the first part of Equation (10) describes the probability that k£ — 1
arrivals fill the batch to n — ¢ order lines. In this case, the kth order arrival
must contain at least Y =i order lines.

The interdeparture time can be calculated by the k-fold convolution of a,
weighted with probability P(N, = k).

kmaz
dys = Y P(N, = k){@®},  knar = [ o w , (11)
k=1

Ymin
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where 1,,,;,, is the smallest order size having a non-zero probability of arriving.

4.1.2. Batch Size Distribution

The batch size must be at least of size n, so we must compute the
probability that the number of collected order lines exceeds n by i, 1 =
0,1,...,max(y) — 1. If k arrivals are required to collect at least n order lines,
the batch size distribution is

yb’i = kmaz n—1 —
k=2 Zj:l {?j(k 1)®}n—iyi—(n—j) VEk > 1,
where © = n,n + 1,.... Equation 12 consists of two components. First, we

combine k£ — 1 arriving customer orders such that the number of order lines
isn—7,7=1,....,n— 1. Then, the size of the kth customer order must be
exactly i — (n — j) in order to form a batch of size i.

4.1.3. Waiting Time Distribution

We derive the waiting time of arriving orders assuming that k& arrivals
are required to form a batch. If £ > 1, the order lines of the first arriving
customer order have to wait for £ — 1 arrivals. In contrast, the order lines
of an arriving customer order which fill the batch to at least n order lines
do not have to wait at all. In general, order lines in the ¢th arrival, ¢ < k,
must wait for £ — ¢ more arrivals for the batch to be completed. For these
order lines, the waiting time distribution is the (k —i)-fold convolution of the
interarrival time distribution. Thus, we must consider the probability that
an arbitrary order line belongs to the ¢th arrival under the condition that
k > i arrivals are required to form a batch.

Define E(Y|N, = k) as the mean size of customer order 1, ...,k —1 (mean
number of order lines) given that k£ > 1 arrivals are required to fill a batch.
If exactly two customer orders arrive to form a batch (k = 2), we get

max(y)

E(Y|Na:2):m iyn_j(n— Z w|. ()

The size of the first customer order is n — j, and the size of the second is at
least j. Equation 13 gives us the expected size of the first customer order.
If £ > 2, we get

n—zr—1 maz(y)

E<Y|Na:]€) Zyx Z {_(k 2®}n —j— Z Yn
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Figure 12: Example of a batch forming process with £ = 5 arrivals to fill a batch of at
least size n = 10. Illustrated is the waiting time of arriving customer orders as multiples
of the interarrival time.

The size of the first order is x, and Equation 14 therefore delivers the expected
size of the first customer order. However, because Y is iid, F(Y|N, = k)
represents also the expected size of all customer orders from 1 up to k& — 1.

The quotient E(Y|N, = k)/n is the probability that an arriving order
belongs to the ¢th arrival with ¢ = 1,....k — 1 and k£ > 1. We determine
the waiting time distribution of a customer order when N, = k arrivals are
required to form a batch by

n

1-%,  P(W =N, = k) if i = 0.

ST, (B iz

P(W, =i|N, = k) = (15)

The law of total probability leads to the waiting time distribution, given as
follows

kmlll'
wpi =y PW =ilN, = k)P(N,=k) i=0,1,.., (16)
k=1

where P(N, = k) is given by Equation 10.
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On-time Service Perfermance of a 1-Block Warehouse with

the Arrival of Multi-Line Orders
(Data: M=20; N=40; d=3; w=1; u=0.25)
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Figure 13: Optimal batch size in a 1-block warehouse for the multi-order line case.

Given dy;, Ybi, Wp, and the travel time model introduced in Section 2, the
throughput time distribution for the multi-line order case can be computed
using the results in Section 3.4.

4.2. Throughput Time Analysis for Multi-Line Orders

The system behavior for the multi-line order case is similar to that for
the single-line case. As before, we can easily compute the optimal batch size
or calculate the expected service level for a given set of parameters. In an ex-
ample (see Figure 13), we assume M = 20, N =40,d =3,w = 1,n =12,u =
0.25, the interarrival time distribution has pmf @ = {0.0,0.010, 0.020, 0.025,
0.050, 0.070, 0.050, 0.090, 0.080, 0.070, 0.060, 0.055, 0.055, 0.050, 0.050, 0.045,
0.040, 0.035, 0.030, 0.030, 0.030, 0.025, 0.020, 0.020, 0.015, 0.015, 0.010}, and the
distribution of number of order lines in a customer order has pmf y =
{0.0,0.4,0.3,0.1,0.1,0.1}, where the first element is yy. As in the single-
line case, the variability of the system has a strong effect on the throughput
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time, and therefore on the system’s performance. The service level of the
picking system is considerably more sensitive to an increasing process vari-
ability than is the mean throughput time.

5. Conclusion

The contributions of the paper to the literature are the following: First,
we introduced with discrete time queues a new methodology to model picking
processes in a warehouse. Discrete time queues have the attractive feature
of admitting empirical data for interarrival times or for the number of lines
in an order, which makes them easier to implement in practice. Second, the
models produce throughput times distributions of picking orders in a ware-
house, but require only a stationary arrival stream of orders. The models
provide a fast way to predict, for example, what percentage of orders can be
processed in a specific lead time or, equivalently, what lead time is required
to promise a specific level of service. Third, we showed that experiments with
prototypical, single-picker warehouse systems suggest that systems designed
with high service level as the goal can be different than those designed to op-
timize mean throughput, albeit not significantly. For example, the batch size
that minimizes the 95th percentile of throughput time is slightly larger than
the batch size that minimizes the mean throughput time. High percentiles of
throughput time are also more sensitive to changes in processing rates and
variances than are mean throughput times.

Picking time distributions are also necessary to properly establish the
length of picking waves, in which batches of orders are released to workers
simultaneously. In practice, warehouse managers sometimes assess the mean
time to process a batch and add to this time an experience-based “safety
buffer” to account for variability in the processing time. Our models might
be used to establish these times more scientifically.
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6. Appendix A

Following is an overview of the method of Grassmann and Jain (1989)
to calculate the waiting time distribution of a discrete time G/G/1 queue.
The basic assumptions are as follows: Orders arrive to the system and are
served in the order of arrival. The waiting time of the nth order is W™ and
the service time is T". The time elapsing between two order arrivals is A™.
We denote C™ = T"™ — A™ and name it the working balance of the nth order.
It is assumed that E(C™) < 0 and that C™ are independent and identical
distributed random variables, which can only take on discrete time values.
Furthermore, the following variables are defined:

a; probability that the time between two orders takes on ¢ time units,
i=1,2,...,max(a),

t; probability that the service time takes on ¢ time units, i = 1,2, ..., max(t),
w; probability that the waiting time takes on ¢ time units, ¢ =0,1,2, ...,

¢; probability that the working balance takes on ¢ time units,
i =min(c),...,—2,—1,0,1,2,...mazx(c).

Then,

maz(t)

= >t i=min(c),..,~2,—1,0,1,2, ... max(c). (17)

By Lindley’s equation in discrete form, w; is given by

0 Vi < 0.

Grassmann and Jain (1989) present three algorithms to solve Equation 18,
which is based on the Wiener-Hopf factorization. They show the convergence
of Algorithm 1, which includes the following steps:

1. Initialize 8 = 0,i = 1,2, ..., —min(c) and o = 0,7 = 1,2, ..., maz(c)
2. Form = 0,1,2,...
(a)

o
o™

ﬁm+1—cﬂ+z L = 0,1,...,—min(c) (19)
a—a’
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(b)
m+1

Z

3. Iterate until max(|af™
4. It follows:

z+]6m

Cﬁz a- )

?"“D <€

..,maz(c)

St
1 -5
S o

1= fo

wgzl—

W; =

5. [ corresponds to the idle time distribution.

7. Appendix B

a;

(20)

(21)

(22)

0.0000
0.0056
0.0033
0.0015
0.2215
0.3261
0.2755
0.1478
0.0020
0.0035
0.0132

0.0000
0.0000
0.0200
0.0268
0.3051
0.1992
0.1780
0.1724
0.0986

0.0000
0.0000
0.0200
0.0879
0.2830
0.1656
0.1432
0.1467
0.1324
0.0212

OO Ul W N~ O .

Ne

10
11
12

0.0000
0.0388
0.0200
0.0200
0.2913
0.1829
0.1617
0.1586
0.0832
0.0000
0.0435

0.0000
0.0614
0.0169
0.0146
0.2844
0.1752
0.1540
0.1518
0.0779
0.0000
0.0638

0.0000
0.0837
0.0138
0.0100
0.2774
0.1674
0.1462
0.1448
0.0724
0.0000
0.0842

0.0000
0.1010
0.0113
0.0100
0.2717
0.1611
0.1399
0.1390
0.0680
0.0000
0.0879
0.0032
0.0070

0.0000
0.1167
0.0098
0.0073
0.2680
0.1568
0.1353
0.1345
0.0637
0.0000
0.0852
0.0017
0.0211

0.0000
0.0460
0.0500
0.3169
0.0354
0.0100
0.0196
0.4348
0.0086
0.0103
0.0108
0.0101
0.0475

mean

SCV

5.4000 5.4000 5.4000
0.0500 0.0750 0.1000

5.4000
0.1250

5.4000 5.4000
0.1500 0.1750

5.4000
0.2000

5.4000
0.2250

5.4000
0.2500

Table 2: Interarrival time distributions, a;, which have the same mean value but a varying
SCV. These data are used to study the impact of the variability of the order arrival process
on throughput time (Figure 11).
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Comparison of probability density function of negative
exponential distribution with discrete time distribution
0,14 - (both have a mean value of 7.9 time units)
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Figure 14: Continuous and discrete time interarrival time distributions with the same
mean.
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