
Optimization of Failure Behavior of a

Decentralized High-Density

2D Storage System

Kai Furmans, Kevin R. Gue and Zäzilia Seibold

K. Furmans and Z. Seibold

Institute for Material Handling and Logistics, Karlsruhe Institute of Technology,

76131 Karlsruhe, Germany

e-mail: seibold@kit.edu

K. Gue

Department of Industrial and Systems Engineering, Auburn University, Auburn,

AL 36849, USA

e-mail: kevin.gue@auburn.edu

Abstract To meet the requirement of flexibility in intralogistics systems, the

GridFlow 2D storage system has been developed which is able react to fluctuating

processing volumes and layout changes. It consists of multiple autonomous con-

veyor modules, FlexConveyors, each equipped with a controller. The decentral-

ized control can be described with a set of rules for the communication by mes-

sage passing between the controllers of the FlexConveyors. In this paper an

adapted control algorithm is presented which enables the conveyor modules to re-

act to occurring failures in neighboring modules. It has been theoretically proved

that the presented algorithm prevents system deadlock. Also the impact of occur-

ring failures on the system performance has been examined through a Monte Carlo

experiment using discrete

event simulation.

1 Introduction

Economic changes like

globalization, e-commerce

and economic instability –

just to name a few – have

shifted the conditions and

requirements of logistics
Fig. 1 The GridFlow storage system

2

systems in recent years. As part of material handling systems, modern storage sys-

tems should combine both high performance and flexibility. Decentralized control

enables the realization of flexible, automated material handling systems (Furmans

et al. 2010, Windt et al. 2007).

To meet the new requirements of high flexibility, the GridFlow system has

been developed consisting of multiple, autonomous modules being able to fulfill

the tasks of a storage system (Gue et al. 2011) (Fig. 1). Each module is equipped

with electronics to act independently of a central controller; the control of the

GridFlow is decentralized.

GridFlow unifies two different approaches to turn a storage system into a high-

performing and space-efficient system. On one hand, the design guarantees high

throughput and high density at the same time. On the other hand, it follows the

current trend towards flexibility in material flow systems by featuring decentral-

ized control. Single modules can easily be plugged and unplugged in order to

adapt to fluctuating volumes and changing layout requirements.

Besides flexibility, another advantage of decentralized control is system relia-

bility: In centralized systems, the failure of the central controller causes a com-

plete system breakdown, whereas, in decentralized systems, the failure of modules

does not necessarily affect the function of the other modules.

The research presented in this paper introduces an algorithm enabling conveyor

modules in a GridFlow system to react to failures and to resolve blockings in the

material flow.

In the following section the general concept of GridFlow is presented. The next

section describes the problem of failures in GridFlow and presents the adapted al-

gorithm. We show that the system will not deadlock, and then describe the impact

of failures on system performance.

 2 System Description

The GridFlow system examined in this paper is designed in 2D with incoming and

Fig. 2 Example movement in a 5x5 GridFlow system with 4 empty cells (white spaces)

3

outgoing goods. To enable movement of the goods, there must be at least one

empty cell per row in the initial setup. Fig. 2 shows an example set of movement

steps in a 5x5 GridFlow system. As outgoing goods are retrieved to the South of

the storage space, requested items move southward to the retrieval row. Also in-

coming goods, the replenishing items, move southward and fill up the storage

space.

To enable southward movement of requested and replenishing items, empty

conveyor cells (white spaces) must be south of them. Stored items in the way of

requested or replenishing items try to move east- and westward to create empty

cells. In Fig. 2, white arrows specify the movement of items during four cycles.

An item can move to a directly neighboring cell during one cycle.

The decision of which items are moved is made by communication between the

controllers in the conveyor units. The conveyors are considered to be agents capa-

ble of making decisions based on perceptions and performing resulting actions

(Woolridge 2009). Each cycle consists of four process steps, which start in each

conveyor unit concurrently.

North-South negotiation:

Communication is conducted in North-South direction. Conveyor units occupied

with requested or replenishing items make a decision about conveying. If the

South neighbor is empty, the conveyors commit to convey down. If the South

neighbor is occupied with a stored item, it will try to transport it east- or west-

ward.

East-West negotiation:

Communication is conducted in East-West direction. The conveyors of each row

decide which stored items to transport east- or westward. Occupied conveyors

south of requested or replenishing items try to become empty and therefore initiate

a message flow following a Request-Willing-Commit logic. Empty cells are need-

ed to enable East-West movement of stored items. Basically, requested and re-

plenishing items located north of the row compete for empty cells.

Transportation:

The conveyors perform the conveying action chosen during the negotiation phas-

es. Active conveyors update their state according to the movement of the con-

veyed items.

Retrieval, replenishment and requesting:

During this step outgoing goods are retrieved, new items are placed in the replen-

ishment row and new requests are put into the system. Affected conveyors update

their state.

To control the system replenishment and the North-South distribution of empty

cells, a target row is assigned to each item. The target row defines the storage lo-

cation to which the item must move. As long as the item has not reached its target

row, it is considered to be a replenishing item.

4

3 Problem Statement

High reliability is one of the advantages of a decentralized system. In order to

maximize the reliability of GridFlow, each conveyor must be able to handle fail-

ures occurring both to itself and to neighboring conveyors. In this research, only

failure types affecting the negotiations between the conveyor units are considered.

Therefore, the algorithm has been adapted to the following two failure types:

failed conveyors and failed ports.

If a complete conveyor unit fails, the carried item cannot be retrieved. To pre-

vent a system deadlock, the control algorithm has to detect and to resolve block-

ings of row sections in the storage space. The system is deadlocked if one convey-

or having the objective to forward the carried item cannot fulfill its task at any

future cycle. The objective of the algorithm is to keep the system working until the

failure is repaired and to guarantee that as many requested items as possible can be

retrieved.

The following section describes the modification of the algorithm and the

countermeasures taken to prevent system deadlock. We then demonstrate that the

modified algorithm successfully prevents deadlock, and show the performance of

a system with failed conveyors and failed ports. The results can give insights into

how reliable a single conveyor unit should work and how quickly failures should

be repaired.

4 The Control Concept

A conveyor can either fail mechanically, which means that it can communicate its

breakdown to its neighbors, or the controller can fail, which interrupts communi-

cation. Both cases have the same consequences on the control problem, only fail-

ure detection is done in a different way.

A failed port interrupts message passing and hinders communication between

B

Source

Sink

Storage
space

BB

B
B

B

B

B

B

B

B

B
Moving direction of
requested and replenishing
items around a failure

Broken East-West port

Broken North-South port

Broken conveyors

B
South-blocked conveyor

Fig. 3 Schematic representation of a system with failures

5

the two adjacent conveyor units. The neighbors connected by this port do not get

any reply to messages. A failed port is comparable to a passive port at the border

of the system because it interdicts conveying in this direction. In the figures be-

low, passive ports are represented by a black line (see Fig. 3).

As shown in Fig. 3 a failed conveyor corresponds to a conveyor whose four ports

(North, East, South and West) are unresponsive or passive. The conveyor is

blocked on four sides and the currently placed item cannot be moved until the

failed conveyor is repaired. In order to generalize, every failure type is represented

by a passive port in the control algorithm.

A passive port in the middle of the storage space blocks movement of items: A

failed East-West port divides a row into two sections and blocks East-West

movement necessary to locate empty cells where they are needed. A failed North-

South port hinders South-movement of requested and replenishing items. By im-

plication, requested or replenishing items on conveyors blocked to the South must

move east- or westward before being able to move southward.

A conveyor always has one of the states shown in Table 1.

 Conveyor state Occupied by Objective to forward the item

 Empty - -

 S-Requesting Requested or replenishing item Southward

 Occupied Stored item -

EW-Requesting Stored item East- or westward

S-EW-Requesting Requested or replenishing item

East-or westward in direction of

closest escape to the South

Table 1 Conveyor states

In the following section, message types are introduced which are necessary to de-

tect and resolve the blocking of a row section. The complete algorithm also con-

tains other message types and rules explained in communication protocols depend-

ing on negotiation states and message types (Krothapalli et al. 1999).

North-South negotiation

Request This message is triggered at the beginning of North-South negotiation.

Blocked

This message is triggered if a Request cannot be satisfied because of a passive

port.

During North-South negotiation, the S-Requesting conveyors send request mes-

sages to the South looking for an empty cell. Assuming that the successful recep-

tion of a request must be confirmed, the lack of feedback implies a passive port. If

6

a S-Requesting conveyor detects a passive port, its

state turns into S-EW-Requesting. Fig. 4 shows an

example.

A S-EW-Requesting conveyor also checks if the

closest escape to the South is in the East or the West.

If the South-blocked conveyor discovers that there is

neither an escape for the carried item in the East nor

the West, it does not try to move the item anymore. In

this pathological case with a conveyor blocked in

three directions, it acts as if it were completely failed.

East-West negotiation

Request This message is triggered at the beginning of East-West negotiation.

Blocked

This message is triggered if a conveyor receives a request and movement of the

carried box to the opposite side is blocked.

Resolve

blocking

This message is triggered if a S-EW-Requesting conveyor is blocked on both

sides.

During East-West negotiation, the conveyors decide which items to move east- or

westward. In a system with failures they

should additionally detect blocked row

sections and take actions to resolve the

blocking.

An EW-Requesting conveyor tries to

forward the carried item east- or west-

ward to create an empty cell for a re-

quested or replenishing item from the

North. To minimize transportation of

items, it selects the direction of the clos-

est empty cell enabling East-West

movement.

A S-EW-Requesting conveyor also

tries to forward the carried item east- or

westward. But in contrast to the EW-

Requesting conveyor, it should forward

the item in direction of the closest escape

to the South. This direction has been de-

termined at the end of North-South nego-

tiation. Only if the escape is equidistant

in both directions, the conveyor selects

the direction of the closest empty cell

during East-West negotiation.

At the beginning of East-West negoti-

ation, EW-Requesting and S-EW-Fig. 5 Example for East-West negotiation

Fig. 4 Example for East-West

negotiation

7

Requesting conveyors initiate Request-messages in one or both directions concur-

rently. A row section is blocked if the objective of a conveyor to move the carried

item east- or westward cannot be satisfied.

To detect passive ports, the successful transmission of a Request-message from

conveyor to conveyor must be confirmed. Again, the lack of feedback implies a

passive port. A row section is blocked if there is no Empty or S-Requesting con-

veyor; the requesting conveyor will receive feedback that movement in this direc-

tion is not possible. If the row section is blocked in both directions, the conveyor

must resolve the blocking by requesting a stored item to move southward.

In the example in Fig. 5 three conveyors must check if the movement of the

carried item is blocked long-term. Two of them actually detect and resolve a

blocking: The EW-Requesting conveyor requests the carried item to move south-

ward and the S-EW-Requesting conveyor on the left side requests the stored item

on the neighboring conveyor to move southward.

5 Demonstration of System Liveness

Assuming that the retrieval row is empty at the beginning of each cycle, it is only

necessary to prove that every requested and replenishing item can be transported

to the next row. This is the case if every conveyor with an objective can forward

the carried item at some future cycle. Instead of preventing blocked sections, the

presented algorithm should guarantee that blockings of row sections are detected

and resolved.

Obviously, there are combinations of multiple failures blocking the retrieval of

requested items, for example a complete row of failed North-South ports. In this

case a conveyor carrying a requested item cannot fulfill its objective and gives it

up; it acts as completely failed.

Three questions have to be answered to demonstrate that the described algo-

rithm guarantees that a requested item can be retrieved if there is a path of func-

tioning conveyors and ports to the retrieval row:

 When is a row section blocked?

 How are blocked row sections detected?

 How are blockings of row sections resolved?

Every conveyor has one of the states described in the Table 1.1. An empty or S-

Requesting conveyor indicates that a row section is not blocked because it enables

East-West movement.

When is a row section blocked?

A row section is blocked if a conveyor with an objective cannot forward the car-

ried item in the required direction. By implication, a row section is blocked if

there is an EW-Requesting or S-EW-Requesting conveyor but no empty or S-

Requesting conveyor in the conveying direction of the requesting conveyor.

8

How are blocked row sections detected?

Each conveyor with the objective to move its item east-or westward initiates re-

quests in the potential conveying directions. A request is forwarded by occupied

conveyors until it is:

 stopped by an empty or S-Requesting conveyor, because these states indicate

that movement is not blocked long-term.

 stopped by an EW-Requesting or S-EW-Requesting conveyor, because this

conveyor already sent requests by itself.

 answered with a message that movement is blocked if there is a passive port.

A Blocked-message is forwarded through the complete row until it is stopped ei-

ther by a conveyor with the indication that the row section is not blocked or by a

conveyor that is blocked on the opposite side.

How are blockings of row sections resolved?

A blocking can be resolved by turning a conveyor state from Occupied or EW-

Requesting into S-Requesting. The affected item will move southward and leave

an empty cell to enable East-West movement. If an EW-Requesting conveyor re-

ceives Blocked-messages from both sides, it turns into S-Requesting. If a S-EW-

Requesting conveyor is blocked in both directions, it triggers a message to resolve

the blocking which is forwarded to the closest conveyor occupied with a stored

item.

The message rules defined in communication protocols guarantee the de-

scribed behavior. Every conveyor with the objective to forward a carried item can

fulfill its task at some future cycle. Consequently, every requested item that is not

blocked on a failed conveyor can be retrieved, and the system does not deadlock.

6 System Performance Analysis

GridFlow has been modeled in an agent-based, discrete-event simulation envi-

ronment. Items enter the system by appearing at random cells in the replenishment

row and leave the system by disappearing in the retrieval row. In this study the

system performance is determined by a CONWIP analysis (CONstant Work In

Process), i.e. the number of items and the number of requested items in the system

are constant.

For the performance analysis of a system with failures, a high system density

has been chosen: The storage space stores 144 items on 12 rows and 13 columns,

which corresponds to a density of 92.3 %. The work in process varies from 10 to

130 requests in steps of 10. In order to fulfill the conditions for the CONWIP

analysis, the simulation does not exactly correspond to the system behavior in re-

ality: If a requested item is blocked on a failed conveyor, another request is gener-

ated in order to keep a constant number of processed requests in the system.

9

The objective of

the study is to simu-

late the system per-

formance with realis-

tic conditions. The

results demonstrate

how reliable the con-

veyor units should be

and how frequently

failures should be re-

paired.

Every conveyor

unit and every port

fails at a certain rate.

The reciprocal value

of the failure rate de-

fines the "Mean Time Between Failure" (MTBF) indicating how long a convey-

or/port works without failure after being brought into service or after being re-

paired. In the experiments, MTBF varies from 800 to 8000 operating hours. The

probability of a failure occurrence is assumed to be exponentially distributed: A

conveyor/port fails with the same probability at all times independently from the

last failure occurrence. Basically, every cycle in GridFlow can be understood as

Bernoulli trial with 1/MTBF as probability of failure for every conveyor module.

Failed units are not repaired immediately but at a periodically defined time, for

example, at the end of a working shift. As the algorithm has been adapted to fail-

ures, the system does not need to shut down immediately after failure occurrence

but continues to operate with the failure until the next scheduled repair. The "Time

Between Repair" (TBR) varies from 1 to 3 shifts. It describes the definite time be-

tween two scheduled repairs in contrast to the commonly used term “Mean Time

To Repair” (MTTR) describing the statistically distributed time between a failure

and its repair. A fail-

ure can easily be re-

paired by exchanging

the failed conveyor

unit with a working

one.

Because of the sta-

tistical failure occur-

rence, the interfer-

ence of multiple

failures is highly in-

fluencing the result:

for example, two

failed North-South

ports neighboring in Fig. 7 Usage of repair times

Fig. 6 System performance with statistical failure occurrence

10

the same row have a significantly greater impact on the throughput than two failed

North-South ports in the same column. Therefore, a Monte Carlo simulation with

multiple experiments has been conducted for each combination of MTBF, TBR

and work in process. The throughput and the number of resolving actions are av-

eraged over the different values of WIP.

Fig. 6 shows the average throughput compared to a system without failures. As

expected, the throughput decreases with increasing failure probability (1/MTBF)

and decreasing repair frequency (1/TBR). The figure also shows that even with a

repair frequency equal to 3 shifts, a good system performance can be achieved de-

spite failures. If, for example, the throughput should not decrease more than 5%

compared to a system without failures and if the repair frequency is 3 shifts, a

conveyor unit should work at least 4000 operating hours without failure.

Fig. 7 gives insights into the necessity of repairs. It illustrates how often the

scheduled repair time is required. For higher MTBF, it is not necessary to sched-

ule a repair after each working shift.

7 Conclusion

The algorithm for the GridFlow system has been successfully adapted to failures

in any occurring combination. It has been shown that system deadlock is prevent-

ed.

The simulation of a working GridFlow with statistical failure occurrence has

shown that good system performance can be realized despite failures. Since it is

not required to repair a failure immediately after its detection, high system availa-

bility is achieved. Because a failure can be repaired by exchanging the failed unit,

a relatively high repair frequency has been assumed. Realizing a high technical re-

liability would decrease the required repair frequency.

References

Furmans K, Schönung F, Gue K R (2010) Plug-and-work material handling systems

http://web.mac.com/krgue/Kevin_Gue/Blog/Entries/2010/8/25_Plug-and-

Work_Material_Handling_files/futuremh.pdf. Accessed 11 Nov 2011

Gue K R, Furmans K (2011) Decentralized Control in a Grid-Based Storage System. Proceed-

ings of the 2011 Industrial Engineering Research Conference, eds. T. Doolen and E. Van

Aken, 2011

Krothapalli N K C, Deshmukh A V(1999) Design of negotiation protocols for multi-agent manu-

facturing systems. International Journal of Production Research 37 (7), 1601-1624

Windt K, Hülsmann M (2007) Changing paradigms in logistics - Understanding the shift from

conventional control to autonomous cooperation and control. Springer Berlin Heidelberg

Woolridge M (2009) An Introduction to MultiAgent Systems. John Wiley & Sons Ltd

http://web.mac.com/krgue/Kevin_Gue/Blog/Entries/2010/8/25_Plug-and-Work_Material_Handling_files/futuremh.pdf
http://web.mac.com/krgue/Kevin_Gue/Blog/Entries/2010/8/25_Plug-and-Work_Material_Handling_files/futuremh.pdf

