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GridStore: A Puzzle-Based Storage System
with Decentralized Control

Kevin R. Gue, Kai Furmans, Zizilia Seibold, Onur Uludag

Abstract—We describe a high-density storage system for
physical goods in which identical conveyor modules can be
plugged together to store and retrieve unit-loads or small
containers. Material movement conforms to the “puzzle
architecture” found in popular board games such as the 15-
puzzle and Rush Hour. Control of the system is decentralized,
meaning that each module contains identical operating logic
that directs its behavior based on local conditions and
message passing. We prove the system deadlock-free and show
its performance under a wide variety of operating configurations.

Note to Practitioners—One of the obstacles to widespread
adoption of automated material handling systems is inflexibility:
once a system is designed and installed, making changes to its
configuration is typically very difficult. The GridStore system
overcomes this obstacle for high-density storage systems by
implementing decentralized control, meaning that each conveyor
module in a GridStore system has its own, independent controller.
One implication of decentralized control is that the system can
be expanded or reconfigured rapidly, and without rewiring or
reprogramming. Applications of this system could range from
small, desktop systems to large, container-handling systems.

I. INTRODUCTION

TORAGE systems for physical goods are a necessary
S and important part of most manufacturing and distribu-
tion enterprises. In manufacturing, an automated storage and
retrieval system (AS/RS) can be a space-effective way to store
components, sub-assemblies, or work-in-process inventory. In
distribution centers, AS/RSs can be the centerpiece of fully-
automated unit-load delivery systems, or they can be used
to replenish case or broken-case order picking areas. Tote-
based systems are often used to bring small items to an
order picking workstation, where workers assemble orders.
Such systems have become essential parts of modern logistics
systems, where replenishment quantities are typically small
and product velocity is high.

Despite their potential to reduce the costs of material han-
dling labor, automated storage systems face significant obsta-
cles to adoption. One of the most significant is the perception
that such systems are inflexible; that is, that they are incapable
of accommodating changes in storage capacity, throughput
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capacity, or types of material stored and handled. For example,
retail distribution is highly seasonal, so companies are reluc-
tant to buy sufficient automation to handle products during
the busy season because utilization of the system would be so
low during off seasons. Third-party logistics providers (3PLs)
also struggle to justify automation, because their contracts are
rarely long enough to ensure payback for such a large capital
expenditure.

For our purposes, flexibility in material handling systems
embodies two traits, scalability and reconfigurability. For
example, a traditional, aisle-based AS/RS is somewhat scalable
because one can add or remove racks, aisles, and cranes, but
it is difficult and expensive to reconfigure because adding
an additional crane or aisle involves significant changes to
mechanical and electrical systems. Another contributor to
inflexibility is centralized control, in which making a simple
change to the system requires changes to control logic and
software. For changes to most automated material handling
systems, there is a need to employ the services of technicians
from multiple supporting firms.

Furmans et al. [1] proffer an alternative approach called
plug-and-work material handling, which is based on conveyor
modules that can be plugged together to form networks or,
as we describe here, high density storage systems. Changing
the configuration requires only that modules be unplugged,
rearranged, and plugged together again. Modules self-discover
the new network through a message passing scheme [2]. A
primary feature of plug-and-work systems is decentralized
control. Each module in a plug-and-work system contains the
same control logic, and conveyance by a module at each time
step is based solely on local conditions and on the results of
message passing between modules.

In this paper, we describe a high-density storage system for
physical goods called GRIDSTORE, which features a scalable,
modular structure and decentralized control. We show that the
underlying control rules for GRIDSTORE guarantee deadlock-
free operation, and we describe the performance of the system
for several sizes and configurations.

II. RELATED LITERATURE

Research in automated storage and retrieval systems has
a long history. The seminal paper is [3], which describes
throughput models for classic crane-in-aisle systems. Dozens
of papers have been written on design questions for crane-in-
aisle AS/RSs. See [4] for a survey of this work. A number of
studies have considered high-density, “compact” AS/RSs [5]-
[7]. These systems provide flow rack versions of crane-based
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systems with replenishment from the same side. De Koster et
al. [5] address the sizing problem of a compact AS/RS. Yu
and de Koster [6] studied storage assignment with a class-
based policy.

Some recent work has addressed the design and operation
of a new class of systems called Autonomous Vehicle Storage
and Retrieval Systems (AVS/RSs) [8]-[12]. Instead of aisle-
captive cranes, AVS/RSs employ a number of autonomous
vehicles for the storage and retrieval of items. The authors
have pursued both simulation and queueing-theoretic models
of these systems.

Gue [13] investigated the question of maximum storage
density in a grid, given a constraint on lane depth for every
item. The author addressed only the arrangement of items in
a grid, and not their movement. Gue and Kim [14] considered
a storage system based on the 15-puzzle. They assume that
one or more open cells “escort” a requested item to a single
pickup and deposit point, and that only one item moves at a
time. The sole exception to this policy showed the optimal
algorithm for retrieving a single item using a single open cell
when multiple items can move at the same time. Alfieri et
al. [15] addressed a puzzle-based storage system, but with
a limited number of automated vehicles. Taylor and Gue
[16] investigated several design parameters in puzzle-based
systems with multiple open cells, including the best placement
for open cells, demand patterns, and storage profiles. It is
important to note that the methods in [14] and in [16] assumed
“puzzle movement,” in which open cells act independently
and only one at a time. Moreover, all systems in these papers
assumed centralized control and a single pickup and deposit
point. The decentralized control scheme we describe below
features any number of open cells moving simultaneously to
achieve coordinated retrieval of requested items and storage
of replenishing items.

The computer science literature has addressed problems re-
lated to ours. The most closely related is the “warehouseman’s
problem,” which was first investigated in [17]. The classic
warehouseman’s problem considers a rectangle containing
smaller rectangles of different sizes. The objective is to achieve
a final configuration from a specified initial one. The authors
showed that the general problem is PSPACE-hard, a stronger
condition than NP-hardness. Sharma and Aloimonos [18]
showed that the warehouseman’s problem is tractable under
some restrictions. A closely related problem is the board game
Rush Hour, in which 2 x 1 cars and 3 x 1 trucks are placed at
different orientations on a grid to simulate traffic gridlock. The
objective is to move vehicles forward and backward to allow
the passage of a single car from a blocked position to an exit
on the perimeter of the board. Flake and Baum [19] showed
that the feasibility question (can the car escape at all?) is
PSPACE-complete. Hearn and Demaine [20] showed that Rush
Hour with cars only is PSPACE-complete. Demaine and Hearn
[21] describe a method for investigating the complexity of
puzzles such as Rush Hour. Depuy and Taylor [22] present an
integer program to solve the Rush Hour puzzle in the minimum
number of moves. For computational and other reasons, integer
programming is inappropriate for our very large-scale, real-
time control problem.

An important system related to GRIDSTORE is the Flex-
conveyor [2], a modular conveyor system that features de-
centralized control to move totes among unit-sized conveyor
modules. Mayer and Furmans show that their control algorithm
is deadlock-free for any number of totes in the system, as long
as at least one module is unoccupied.

III. THE GRIDSTORE SYSTEM

Before presenting the details of decentralized control and
system behavior, we give a high-level view of the GRIDSTORE
system.

Consider a rectangular grid of square conveyor modules,
each of which is capable of conveying in the four cardinal
directions: North, South, East, and West. This capability is
standard in the conveyor industry, and is made possible by,
for example, roller conveyors in one dimension (N, S) and
pop-up belts in the other (E, W). Modules communicate only
with neighbor modules to which they are connected in the
grid. They are also capable of communicating with the items
they contain (via RFID, for example). An alternative way of
knowing about the items is via messages passed from neighbor
modules along with the items.

The southernmost side of the grid is a retrieval conveyor,
which we assume conveys away from the grid at infinite speed.
That is, once a requested item reaches the retrieval conveyor,
it is removed from the system and will not interfere with the
movement of other items. Although this assumption sounds
unrealistic, all that is needed in practice is a retrieval system
that conveys away from the grid at a speed greater than the
speed of movements within the grid. The northernmost bound-
ary is a replenishment conveyor onto which items appear, to
be stored in their home rows. The system entertains requests,
via RFID for example, for particular items in the grid. Once
an item has been requested, its host conveyor module attempts
to move it southward.

Figure 1 illustrates three items moving to the retrieval
conveyor. At each time step, interfering items move out of the
way of requested items such that, if possible, the requested
items move uninterrupted to the retrieval conveyor in a sort of
“virtual aisle.” As long as the module immediately in front of a
moving item is clear, the item is free to continue its movement.
The GRIDSTORE control algorithm we describe below both
controls movement of requested items to the retrieval conveyor
and movement of replenishing items to their home rows.

IV. DECENTRALIZED CONTROL

It is tempting to imagine the retrieval of requested items
and storing of replenishing items as a large combinatorial
optimization problem. We have chosen another path for several
reasons. First, any reasonably sized system would have an
enormous number of integer variables almost certain to lead
to intractability. Second, the system must respond to random
requests, and therefore any optimization model would have
to be solved thousands of times per day in real-time, a feat
hard to imagine. Third, reliability of the system would be
inextricably tied to a large-scale optimization model, for which
such models are ill-suited. Fourth, centralized control makes
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Fig. 1. Three items (in black) moving southward to a retrieval conveyor.

Items that have not been requested (in gray) move out of the way to clear a
path.

the system difficult to reconfigure, and ease of reconfiguration
is one of the motivations behind the system.

Instead, coordinated movement within the GRIDSTORE
system is accomplished by decentralized control; at each time
step, each module assesses its current state and the states of
its neighbors, and then executes the same set of instructions.

The system operates according to an Assess-Negotiate-
Convey cycle. In the Assess phase, each module takes a state
according to the presence or absence of an item. The three
possible states are:

Il SEEKING: The module is occupied with a “mov-
ing” (requested or replenishing) item.

[ OccuPIED: The module is occupied with a stored
(not moving) item.

[ ] EMPTY: The module has no item.

To determine whether or not to convey, and in which
direction to convey, modules engage in two electronic negoti-
ations, which are accomplished by means of message passing.
Modules take on negotiating positions, which change during
the negotiation. In the convey phase, the modules move the
items according to the results of the negotiation.

Negotiation is done with message passing: Once a module
receives a message, it changes its negotiating position and/or
sends a message to its neighbor according to the protocol.
Negotiating positions simply reflect having received or sent a
message from a particular side. Thus, there is an equivalence
between negotiating positions and message types.

A. North-South Negotiation

The North-South negotiation has two distinct phases. In the
first, replenishing items look for opportunities to accomplish a
“tandem replenishment.” In the second, requested items look
for opportunities for tandem movement.

Replenishment is the process of moving items from the
replenishment row to their home rows. Once in its home row,
a replenishing item becomes an ordinary stored item. Tandem
replenishment is based on the insight that it does not matter
which stored items are in a row, only that the number of
items with that assigned home row is constant (more on this
requirement below). Items exchange home rows to accomplish
more efficient replenishment—instead of one item moving
through several rows in several cycles, several items move

in tandem in one cycle, after exchanging home rows. Figure 2
shows two examples in which the replenishment is accelerated
by tandem movement. Both examples show a storage column
before the exchange of home rows, after the exchange of home
rows, and after the southward movement of the items by one
row. In the left example, the number of replenishing items is
the same at the beginning and end of the cycle; whereas, in
the right example, the number of replenishing items increases
by one. Even though an increased number of replenishing
items hinders East-West movement slightly, the exchange of
home rows also enables the movement of the requested item
in this case. Details of the message passing scheme for tandem
replenishment are in the Appendix.

Before After After
exchange exchange movement
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Before After After
exchange exchange movement
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Fig. 2. Examples of tandem replenishment by exchange of home rows.

The goal of the second phase of North-South negotiation is
to identify convoys of moving items, which will move together
in the conveyance phase. For example, if the item south of a
requested item is moving southward, then the requested item
should follow it in the same time step. Without this step,
would-be convoys separate themselves with empty modules
between each moving item, and it would take more cycles to
accomplish retrievals.

At the beginning of North-South negotiation, the modules
are in a default negotiation position (no position). Message
types are:

J/R SEEKING modules initiate a Request message to
the south in order to check for an EMPTY module.

TC An EMPTY module responds with a Commit
message that it will receive the moving item.

The North-South negotiation is defined by a communication
protocol with 6 rules (Figure 3). Each section in the table
represents a rule for a certain situation. The left side of each
rule shows the module state and its negotiating position upon
receiving a certain message type. The right side shows the new
negotiating position and the messages sent by the module. The
left most rule, for example, shows an EMPTY module receiving
a Request message. It responds with a Commit message to
the North and takes the corresponding negotiating position. It
also forwards the Request message to the South.

The table omits infeasible combinations of states and re-
ceived messages, as well as conditions that do not result in a
message being passed or a negotiating position being changed.
The first row of the table shows the initiation of the Request.
The second and third rows define the rules for the receipt
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Fig. 3.  Communication protocol for North-South negotiation. Negotiating
positions are represented by small letters on the side of the conveyor state
symbol.
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Fig. 4. Two examples for North-South negotiation: identification of convoy
(left side) and necessity to clear the path (right side)
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of a Request from the North and a Commit from the South
respectively.

Figure 4 shows two examples of North-South negotiation.
In the left example, two SEEKING conveyors send Request
messages to their southern neighbors. The EMPTY module
responds to the Request with a Commit message. Because
the middle module has received a Request from its northern
neighbor, it forwards the Commit message to the North. All
three modules turn their negotiating position to Commit so
that both items move in tandem.

The example on the right shows an OCCUPIED module
blocking the way of two requested items. To move its item
out of the way by finding an EMPTY module, the OCCUPIED
must engage in East-West negotiation, to which we now turn.

B. East-West Negotiation

The outcome of the North-South negotiation serves as input
to the East-West negotiation. The goal of this phase is to
move stored items out of the way of moving items. The
message passing protocol follows a Request-Willing-Commit
logic. Modules that need to create a “virtual aisle” look East
and West for EMPTY modules to accommodate.

The negotiation protocol aims to move stored items in
convoys east- or westward. Message types for East-West
negotiation are:

Empty Occupied

Initialization of
Request

Reception of
Request

Reception of
Willing

LR
-,

Fig. 5.  Communication protocol for East-West negotiation (only shown for
messages arriving from West)

Reception of
Commit

R, Modules trying to become empty send Request

- .
messages to the East and West in order to find an
EMPTY module.

% An EMPTY module responds to the first arriving

Request that it is Willing to receive movement
from that side.

g The requesting module responds to the first arriv-
ing Willing that it will Commit in that direction.

The East-West negotiation is also defined by a communi-
cation protocol (Figure 5). Again, each section in the table
represents a rule for a certain situation. The upper graphic of
each rule shows the module state and its negotiating position
while receiving a certain message type. The lower graphic
shows the new negotiating position and the messages sent by
the module. As before, infeasible combinations of states and
received messages are omitted. Rules for messages from the
East are analogous.

East-West negotiation is based on the following insight: A
module that tries to become empty sends a message to its
two neighbors “asking” if it can convey in that direction.
The neighbor modules may themselves be OCCUPIED, so they
may have to ask rheir neighbors if they can convey, and so
on. Eventually, and inevitably, one of two things happens:
an EMPTY module receives the message and replies with a
Willing message, or a module that cannot convey (because it
is in state SEEKING, for example) receives and discards the
message. The Willing message is sent back to the original
requestor which replies with a Commit message.

In order to reduce movement in the grid, an EMPTY
module should, in the presence of multiple requests, reply
to the Request generated by its nearest requestor. Similarly,
a module attempting to become empty should reply to the
Willing message generated by the nearest EMPTY module.
Even if messages arrive from both sides at almost the same
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Fig. 6. Example for East-West negotiation
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time (because separated by the same number of modules), in
real hardware there would always be a small time separation
between the messages. In the simulation, as in real hardware,
messages cannot be generated at exactly the same time, and
in the case that a module sends “simultaneous” messages to
the east and west, we randomly choose which direction is sent
first in order to avoid artificially-induced imbalances.

Figure 6 shows an example with two modules trying to
become empty and, thus, initiating Request messages to the
East and West. The EMPTY module replies to the first arriving
Request (from the West) with a Willing. The requesting
module responds with a Commit and both modules take
negotiating position Commit. The Request from the East is
ignored because the EMPTY module has already accepted the
Request from the West.

After East-West negotiation, those modules that have com-
mitted will convey. After conveying (or staying idle), modules
reset their negotiation positions to default, and the Assess-
Negotiate-Convey cycle is repeated.

V. BEHAVIOR

The Assess-Negotiate-Convey cycle controls internal move-
ment of items in the grid, but the storage system as a whole
also requires a control scheme to interact with surrounding ma-
terial handling systems. Without an external control scheme, it
is possible to deadlock the system: simply introduce items as
replenishments on the top row without requesting any items to
depart. Eventually the system fills entirely and is deadlocked.

To prevent such pathological behavior, we require the GRID-
STORE system to operate in a constant work-in-process (CON-
WIP) mode, where “work-in-process” refers to the number of
active requests in the system. The departure of a requested
item in a GRIDSTORE system initiates two actions: (1) a
replenishing item enters from a randomly selected column
in the top row, whose home row is the home row of the
item just departed, and (2) a new request is initiated. These
two conditions ensure a balanced system in the long run, and
as we show below, they ensure the system is deadlock-free.
To initialize the simulation, we release the required level of
work-in-process at once; therefore, there is no warm-up period
during which WIP must be accumulated. In the analysis that
follows, we assume that the new request is equally likely to
be for any unrequested item in the system.

Fig. 7. Several iterations of the GRIDSTORE algorithm. Squares with a round
circle represent replenishing items, which turn gray when they reach their
home rows. Black squares represent requested items. Animation is available
at http://ieeexplore.ieee.org.

Figure 7 shows several iterations in a small example system.
Notice in graphic #1 near the top that a replenishing item and
a requested item move together in the same iteration. This is
an outcome of the North-South negotiation, which establishes
convoy-like behavior before the East-West negotiation begins.
In graphics #5 and following, as the requested item in column
9 moves downward, each potentially interfering item ahead
moves out of the way in the same iteration, thereby allowing
the requested item to depart the system unimpeded in a “virtual
aisle.” Not every requested item experiences uninterrupted
travel, of course, but the control rules are designed to effect
this sort of behavior. After each departing item reaches the
retrieval row, a replenishing item is introduced in a random
column on the top row. (Introducing replenishing items into a
random column is necessary to avoid a system deadlock, as
we show below.) A downloadable animation of GRIDSTORE
is available at http://ieeexplore.ieee.org.

An important practical and theoretical question is whether
GRIDSTORE is deadlock-free, where a deadlock means that
at least one requested or replenishing item will not reach its
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destination row.
Proposition 1: The GRIDSTORE system is deadlock-free.
Proof: Because GRIDSTORE moves requested items only
southward, it is sufficient to show that a requested or replen-
ishing item will always move southward to its destination
eventually. Assume to the contrary that there are requested
or replenishing items in the grid unable to move southward.
Consider the southernmost deadlocked item. The module south
of the deadlocked module must be occupied, either by a
moving item or by a stored item. Call this the blocking module.
If the blocking module contains a moving item, then that item
will eventually move southward; that is, its module cannot be
deadlocked, because it is south of the southernmost deadlocked
module. Therefore, the deadlocked module will eventually
convey downward, a contradiction.

If the blocking module contains a stored item, it will
compete for empty modules when they appear by sending
request messages to the East and West. The initial setup of
the GRIDSTORE system requires & > 0 empty modules in
each row, which ensures that at all times at least k& modules
in each row are either EMPTY or SEEKING to move their
items southward. Because replenishing items enter a random
column, it is impossible for a module always to be occupied
with a moving item; at some time it will become empty.
Therefore, the blocking module will have an infinite number
of chances to secure the services of an empty module. When
it does, its item will move out of the way and the deadlocked
module will convey its item, a contradiction.

Applying this argument to all remaining deadlocked items
completes the proof. ]

VI. PERFORMANCE

Performance of the GRIDSTORE system depends on a
number of design and operational parameters. Here, we in-
vestigate the effects of the number of active requests (work-
in-process, WIP) in the system and the number and distribution
of empty modules per row (k). We also ran experiments
with respect to the question of aspect ratio of the grid. The
results were as expected: Systems with more columns have
higher throughput; systems with fewer columns have lower
throughput for approximately the same number of items stored.

The experiments below are based on a number of assump-
tions:

1) The grid contains 144 unique items, stored among 12
rows and 13, 14 or 15 columns depending on the initial
number k of empty modules per row.

2) Once requested, an item must make its way to the
retrieval row south of the grid, where it immediately
disappears. We make this assumption because we are
interested in the performance of GRIDSTORE without
respect to other material handling systems to which it
might be connected.

3) North of the grid is an unlimited number of replenish-
ment rows. Replenishing items introduced upon retrieval
of a requested item are randomly assigned to an open
module in a replenishment row closest to the grid.

10

Throughput [items per cycle]

0 Il Il Il Il Il Il
0 20 40 60 80 100 120

Number of requests [items]

Fig. 8. Throughput diagram for systems with different density.

4) When initiating a new request, the system selects ran-
domly from among items not currently requested. They
can already be in their home rows or still be in transit.

The decentralized control rules were imbedded into the
necessary number of (software) conveyor objects, which com-
municate with their neighbors as described above. Each sim-
ulation run executed for 5,760 time steps (corresponding to
an 8-hour-shift and a 5 second cycle time), with a warm up
period of 200 steps. Results in the plots reflect 30 replications
of each run. Experiments were run in AnyLogic.

A. Average Throughput and Retrieval Time

For a constant work-in-process system, throughput rate and
average retrieval time are related by Little’s Law, so we discuss
them together. Figure 8 shows the average throughput in items
per cycle for systems with different storage densities (a higher
value of k implies a lower density). Throughput increases with
increasing WIP. The density of the system has the expected
effect: Because more empty modules can form more virtual
aisles, systems with lower density have higher throughput. As
WIP approaches the storage capacity of the grid, almost all
items are moving toward the retrieval conveyor and throughput
approaches the number of columns, less the number of empty
modules per row (n — k).

Figure 9 shows how long it takes to retrieve a requested item
for different levels of WIP. Average retrieval time is shortest
for low WIP, increasing to its maximum at about WIP = 30.
For very high levels of WIP, items are requested as soon as
they enter the system, and retrieval time equals the number of
rows because items move toward the retrieval row in tandem
without obstruction.

Three main phenomena (see Figure 10) can explain the rise
and fall of retrieval time with increasing WIP:

1) Competition for empty modules: For very low levels
of WIP, empty modules align themselves in a way
that items proceed unimpeded toward the retrieval row.
Retrieval times are low. As WIP increases, requested
items can be blocked by stored items below, which are
forced to compete for empty modules making way for
other requested or replenishing items.
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Fig. 9. Average retrieval time diagram for systems with different density.
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Fig. 10. Three phenomena influencing the performance of GRIDSTORE.

2) Interference by requested items: As WIP increases,
requested items can be blocked by stored items below
because there is another moving item between the stored
item and an empty module, which blocks East-West
movement and leads to an increase in retrieval time.

3) Tandem movement southwards: When WIP is high,
items are more likely to move in tandem with other
requested or replenishing items. Tandem movement
makes more efficient use of empty modules because
they need no reposition to facilitate passage of moving
items. Tandem movement is largely responsible for the
decrease in retrieval time at high levels of WIP.

Figures 8 and 9 also illustrate the expected result that
systems with more empty modules have higher throughput
and lower expected retrieval time, but with diminishing benefit
as k increases. Cases with k£ > 3 (not shown) confirm this
observation.

B. Distribution of Retrieval Time

Figure 11 shows the distribution of retrieval time depending
on the row where the item was located when requested.
Retrieval time increases and is also more distributed for upper
rows, as expected. The point of this plot is to show just how
much delay can be experienced by requests in upper rows—in
some cases more than 150 conveying cycles are required to
retrieve an item.

C. Occupancy

Figure 12 shows the average system state for WIP = 30
just before the convey phase (therefore, the retrieval row
is always empty). Lengths of the bars correspond to the

. Replenishment row

. First storage row

Last storage row

50 100
Retrieval Time [cycles]

Fig. 11. Distribution of retrieval time depending on row with WIP = 10 and
k = 1 empty module per row. Grayscale values correspond to the likelihood
that retrieval time takes a certain number of cycles when retrieving an item
from that row. Black dots indicate mean retrieval times.

Replenishment row

First storage row

Retrieval row

R

Average cell occupancy [items]

Fig. 12.  Module occupancy with WIP = 30 and k£ = 1 empty module per
row. Black bars represent the average number of requested items per row;
dark gray the replenishing items, light gray the stored items, and white space
the empty modules)

average number of requested, replenishing, and stored items
in a specific row; white space indicates the number of empty
modules. The vertical line shows the average throughput,
which is the same for every row. The average number of
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requested items in the last row equals the throughput because
items are retrieved in one cycle and never have to wait. The
additional requested and replenishing items in the second to
last row are due to blocking caused by phenomena 1 and 2
described above. The average number of waiting items (sum
of black and gray bars) continues to increase until about the
middle of the grid, at which point it decreases. This can be
explained as follows: Although items requested from northern
rows are more likely to be blocked (for the reasons above),
there are fewer of them because fewer requested items must
pass through northern rows. By contrast, every requested item
passes through the southernmost row. In addition, tandem
replenishment effectively moves replenishing items several
rows in one cycle, which decreases the number of waiting
replenishing and requested items in the northern part of the
grid.

D. Distribution of Empty Modules

So far, we have assumed a uniform distribution of the empty
modules among the rows of GRIDSTORE. It would seem that
a greater number of empty modules in a row would facilitate
higher throughput, but having more in one row means having
fewer in another. Also, more empty modules in a row means
a lower probability that an item will be requested from that
row. Is there a preferred allocation of empty modules?

Here we compare three approaches: a uniform distribution
of empty modules, distributions with more empty modules in
southern rows (“increasing k), and distributions with fewer
empty modules in southern rows (“decreasing k). The test
grid has 12 rows and 14 columns. All three configurations
have same total number empty modules (kK = 2 on average).
The grid includes 144 stored items among the 12 x 14 = 168
modules. Table I shows the distribution of empty modules for
each configuration.

Figure 14 shows the percent difference between the vari-
able k configurations and the uniform distribution of empty
modules. For very low levels of WIP (fewer than 5), there is
no competition for empty positions. Therefore, the distribution
of empty modules has no effect on performance due to low
traffic flow and the absence of blocking (see Figure 14). For
low to moderate levels of WIP, the increasing k configuration
is best. All configurations have about the same performance
for high WIP levels. The relatively low levels of WIP are
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Fig. 13.  Throughput for three configurations with different distributions of
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Fig. 14. When the uniform distribution is the base case, percent difference
in throughput between the uniform, “decreasing k”, and “increasing k”
distributions of empty modules.
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Fig. 15.  Average retrieval time for three configurations with different

distributions of empty modules.

approximately those in which blocking is most problematic
(see Figure 9), which suggests that having additional empty
modules in southern rows tends to relieve congestion. At
higher levels of WIP, there is not much blocking by stored
items, so the configurations perform similarly. The retrieval
time plot (Figure 15) supports this interpretation.

We suspect that any implementation of GRIDSTORE in
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practice would likely operate at low to medium levels of WIP,
and therefore that an increasing k configuration would be
preferred.

VII. CONCLUSIONS

The GRIDSTORE system offers high storage density and
high throughput, which previously have been considered con-
flicting objectives in material handling systems design. Be-
cause storage locations are themselves conveyors capable of
transport, the system can deliver items at almost any required
rate. In order to achieve high density in the third dimension,
multiple levels of GRIDSTORE could work simultaneously in
cooperation with vertical lifts, for example.

We have modeled throughput in GRIDSTORE with a con-
stant work-in-process policy in which the number of active
requests in the system is constant. For low to medium levels
of WIP, throughput increases at an increasing rate, in con-
trast with many vehicle-based material handling systems in
which additional requests lead to congestion and increases in
throughput at a decreasing rate (or even to decreasing through-
put). This feature of GRIDSTORE makes it a potentially attrac-
tive alternative to traditional automated storage and retrieval
systems when the required throughput can fluctuate to high
levels—in support of high-speed order picking workstations
at peak times, for example. (We are ignoring the cost of
such systems, which obviously would be a major criterion for
equipment selection.)

The major contribution of our work is to introduce to
the material handling community a new way of thinking
about material movement on a grid. The GRIDSTORE system
extends existing research on puzzle-based storage systems [14]
by allowing simultaneous retrieval of an arbitrary number
of requests. Future research might develop systems that can
deliver items to any exterior boundary, rather than to a single
side, as GRIDSTORE requires.

The complex behavior of GRIDSTORE is made possible by
a relatively simple decentralized control scheme, which is a
second contribution of our work. Decentralized control allows
for complex system operations and conflict resolution through
electronic negotiation. Effective and, we believe, interesting
behavior of the system emerges as a result of these rules.
Although decentralized control is not new to material handling,
it has been confined almost exclusively to the control of
vehicles such as AGVs or shuttles (an exception is [2]). In
the context of storage systems design, decentralized control
also makes possible a high degree of reconfigurability and
scalability. Modules in an implementation of GRIDSTORE
could be unplugged and replugged together to form systems
of any size and (rectangular) shape.

APPENDIX

Tandem replenishment is accomplished by exchange of
home rows in a Willing-Commit cycle: An empty module
indicates that it is willing to receive by sending a message
to the North. Conveyor modules occupied with replenishing
items check if they can use the empty module for tandem re-
plenishment. If so, they send a message to the South initiating

the exchange of home rows. There are two message types in
this negotiation:

T, Empty cells initiate a message to the North indi-
cating they are Willing to Exchange. The mes-
sage has two attributes: the origin row (oR) of
the message and the forwarded home row (mHR).
Initially, the message does not include any home
row (-), because the empty conveyor has no item.

I* Once a Willing to Exchange message reaches
a module with a replenishing item able to use
the empty cell for tandem movement, the module
initiates the exchange of home rows. The Commit
Exchange message has the home row of the
initiating conveyor as an attribute (0HR).

The communication protocol for exchange of home rows
is shown in Figure 16. A Willing to Exchange message is
forwarded to the north until it reaches either an empty cell
or a conveyor that initiates an exchange of home rows. A
module is only allowed to initiate the exchange if the home
row of the carried replenishing item is farther away than the
empty cell. Modules occupied with stored or replenishing
items and unable to initiate an exchange save the mHR
attribute and replace it with the home rows of their items.
In the communication protocol, the home row of stored and
replenishing items is indicated in the middle of the conveyor
symbol, and the saved mHR information is indicated in the
upper portion.

If the Willing to Exchange message reaches a replenishing
item that can exchange home rows, the associated conveyor
initiates a new Willing to Exchange message to the North.
Additionally, it takes the mHR attribute of the received Willing
to Exchange message as its new home row and initiates a
Commit Exchange message to the South with its old home
row as the oHR attribute.

The Commit Exchange message is forwarded until it
reaches the item north of the empty module that initiated the
message passing. Stored and replenishing items receiving a
Commit Exchange message take the saved home row as their
new home row. The last item takes as home row the oHR
attribute. In this way, the home row of the replenishing item
that initiated the Commit Exchange message becomes the
home row of the item north of the empty cell.
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